Solveeit Logo

Question

Mathematics Question on Circle

Let a, b and c be the length of sides of a triangle ABC such that:
a+b7=b+c8=c+a9\frac {a+b}{7}=\frac {b+c}{8}=\frac {c+a}{9}
If rr and RR are the radius of incircle and radius of circumcircle of the triangle ABC, respectively, then the value of Rr\frac Rr is equal to :

A

52\frac 52

B

22

C

32\frac 32

D

11

Answer

52\frac 52

Explanation

Solution

Let a+b7=b+c8=c+a9=λ\frac {a+b}{7}=\frac {b+c}{8}=\frac {c+a}{9}= λ
Then we can write,
a+b=7λa+b = 7λ ....... (1)
b+c=8λb+c = 8λ ....... (2)
c+a=9λc+a = 9λ ....... (3)

On adding eq(1), (2) and (3), we get
a+b+c=12λa+b+c = 12λ
On solving,
a=4λ, b=3λa = 4λ,\ b= 3λ and c=5λc = 5λ
s=4λ+3λ+5λ2s = \frac {4λ+3λ+5λ}{2}
s=6λs = 6λ

Δ=s(sa)(sb)(sc)Δ = \sqrt {s(s−a)(s−b)(s−c)}
Δ=(6λ)(2λ)(3λ)(λ)Δ = \sqrt {(6λ)(2λ)(3λ)(λ)}
Δ=6λ2Δ= 6λ^2

R=abc4ΔR = \frac {abc}{4Δ}

R=(4λ)(3λ)(5λ)4(6λ2)R = \frac {(4λ)(3λ)(5λ)}{4(6λ^2)}

R=52λR = \frac 52 λ

r=Δsr =\frac Δs

r=6λ26λ=λr= \frac {6λ^2}{6λ} = λ
Now,
Rr=52λλ\frac Rr = \frac {\frac {52}λ}{λ}

Rr=52\frac Rr = \frac 52

So, the correct option is (A): 52\frac 52