Question
Mathematics Question on Circle
Let a, b and c be the length of sides of a triangle ABC such that:
7a+b=8b+c=9c+a
If r and R are the radius of incircle and radius of circumcircle of the triangle ABC, respectively, then the value of rR is equal to :
A
25
B
2
C
23
D
1
Answer
25
Explanation
Solution
Let 7a+b=8b+c=9c+a=λ
Then we can write,
a+b=7λ ....... (1)
b+c=8λ ....... (2)
c+a=9λ ....... (3)
On adding eq(1), (2) and (3), we get
a+b+c=12λ
On solving,
a=4λ, b=3λ and c=5λ
s=24λ+3λ+5λ
s=6λ
Δ=s(s−a)(s−b)(s−c)
Δ=(6λ)(2λ)(3λ)(λ)
Δ=6λ2
R=4Δabc
R=4(6λ2)(4λ)(3λ)(5λ)
R=25λ
r=sΔ
r=6λ6λ2=λ
Now,
rR=λλ52
rR=25
So, the correct option is (A): 25