Solveeit Logo

Question

Question: Let A, B and C be 3 square matrices of order 3 × 3. If $A^3 - 6A^2 + 7A + B = 0$ and $(adj(adj B)) =...

Let A, B and C be 3 square matrices of order 3 × 3. If A36A2+7A+B=0A^3 - 6A^2 + 7A + B = 0 and (adj(adjB))=C(adj(adj B)) = C, where A=[102021203]A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}, then (sum of the elements of C10)(\frac{\text{sum of the elements of C}}{10}) is

A

2.4

B

4.8

C

3.2

D

6.4

Answer

4.8

Explanation

Solution

The given matrix is A=[102021203]A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}. The order of the matrix A is 3x3.

We are given the equation A36A2+7A+B=0A^3 - 6A^2 + 7A + B = 0.

We first find the characteristic equation of matrix A using AλI=0|A - \lambda I| = 0.

AλI=[1λ0202λ1203λ]A - \lambda I = \begin{bmatrix} 1-\lambda & 0 & 2 \\ 0 & 2-\lambda & 1 \\ 2 & 0 & 3-\lambda \end{bmatrix}

AλI=(1λ)2λ103λ00123λ+202λ20|A - \lambda I| = (1-\lambda) \begin{vmatrix} 2-\lambda & 1 \\ 0 & 3-\lambda \end{vmatrix} - 0 \begin{vmatrix} 0 & 1 \\ 2 & 3-\lambda \end{vmatrix} + 2 \begin{vmatrix} 0 & 2-\lambda \\ 2 & 0 \end{vmatrix}

AλI=(1λ)[(2λ)(3λ)0]+2[02(2λ)]|A - \lambda I| = (1-\lambda)[(2-\lambda)(3-\lambda) - 0] + 2[0 - 2(2-\lambda)]

AλI=(1λ)(2λ)(3λ)4(2λ)|A - \lambda I| = (1-\lambda)(2-\lambda)(3-\lambda) - 4(2-\lambda)

AλI=(2λ)[(1λ)(3λ)4]|A - \lambda I| = (2-\lambda)[(1-\lambda)(3-\lambda) - 4]

AλI=(2λ)[3λ3λ+λ24]|A - \lambda I| = (2-\lambda)[3 - \lambda - 3\lambda + \lambda^2 - 4]

AλI=(2λ)[λ24λ1]|A - \lambda I| = (2-\lambda)[\lambda^2 - 4\lambda - 1]

AλI=2λ28λ2λ3+4λ2+λ|A - \lambda I| = 2\lambda^2 - 8\lambda - 2 - \lambda^3 + 4\lambda^2 + \lambda

AλI=λ3+6λ27λ2|A - \lambda I| = -\lambda^3 + 6\lambda^2 - 7\lambda - 2.

The characteristic equation is λ3+6λ27λ2=0-\lambda^3 + 6\lambda^2 - 7\lambda - 2 = 0, or λ36λ2+7λ+2=0\lambda^3 - 6\lambda^2 + 7\lambda + 2 = 0.

By the Cayley-Hamilton theorem, every square matrix satisfies its own characteristic equation. Thus, A36A2+7A+2I=0A^3 - 6A^2 + 7A + 2I = 0, where I is the identity matrix of order 3.

We are given the equation A36A2+7A+B=0A^3 - 6A^2 + 7A + B = 0.

Comparing this equation with the Cayley-Hamilton equation A36A2+7A+2I=0A^3 - 6A^2 + 7A + 2I = 0, we can see that B=2IB = 2I.

So, B=2[100010001]=[200020002]B = 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.

We are given C=adj(adjB)C = adj(adj B).

For a square matrix M of order n, the property adj(adjM)=Mn2Madj(adj M) = |M|^{n-2} M holds.

In this case, M is B and n is 3.

So, C=adj(adjB)=B32B=BBC = adj(adj B) = |B|^{3-2} B = |B| B.

First, let's calculate the determinant of B.

B=200020002|B| = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix}. Since B is a diagonal matrix, its determinant is the product of its diagonal elements.

B=2×2×2=8|B| = 2 \times 2 \times 2 = 8.

Now, we can find C.

C=BB=8B=8[200020002]=[160001600016]C = |B| B = 8 B = 8 \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 16 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 16 \end{bmatrix}.

We need to find the sum of the elements of C.

Sum of elements of C = 16+0+0+0+16+0+0+0+16=16×3=4816 + 0 + 0 + 0 + 16 + 0 + 0 + 0 + 16 = 16 \times 3 = 48.

Finally, we need to calculate (sum of the elements of C10)(\frac{\text{sum of the elements of C}}{10}).

(sum of the elements of C10)=4810=4.8(\frac{\text{sum of the elements of C}}{10}) = \frac{48}{10} = 4.8.