Question
Mathematics Question on types of differential equations
Let α, β(α > β) be the roots of the quadratic equation x2 – x – 4 = 0.
If Pn=αn–βn,n∈N then P13P14P15P16–P14P16–P152+P14P15
is equal to _______.
α, β are the roots of x2 – x – 4 = 0 and
Pn=αn–βn,
∴I=P13P14(P15−P14)P16−P15(P15−P14)
I=P13P14(P16−P15)(P15−P14)
⇒$$I = \frac{(\alpha^{16} - \beta^{16} - \alpha^{15} + \beta^{15})(\alpha^{15} - \beta^{15} - \alpha^{14} + \beta^{14})}{(\alpha^{13} - \beta^{13})(\alpha^{14} - \beta^{14})}
⇒$$I = \frac{\alpha^{15}(\alpha - 1) - \beta^{15}(\beta - 1))(\alpha^{14}(\alpha - 1) - \beta^{14}(\beta - 1))}{(\alpha^{13} - \beta^{13})(\alpha^{14} - \beta^{14})}
As α2–α=4
⇒$$α−1=\frac{4}{α} and β−1=β4
⇒$$I = \frac{(\alpha^{15} \cdot \frac{4}{\alpha} - \beta^{15} \cdot \frac{4}{\beta})(\alpha^{14} \cdot \frac{4}{\alpha} - \beta^{14} \cdot \frac{4}{\beta})}{(\alpha^{13} - \beta^{13})(\alpha^{14} - \beta^{14})}
I=(α14−β14)(α13−β13)16(α14−β14)(α13−β13)
=16
So, the answer is 16.