Solveeit Logo

Question

Mathematics Question on types of differential equations

Let α, β(α > β) be the roots of the quadratic equation x2 – x – 4 = 0.
If Pn=αnβn,nNP_n=α^n–β^n, n∈N then P15P16P14P16P152+P14P15P13P14\frac{P_{15}P_{16}–P_{14}P_{16}–P_{15}^2+P_{14}P_{15}}{P_{13}P_{14}}
is equal to _______.

Answer

α, β are the roots of x2 – x – 4 = 0 and
Pn=αnβn,P_n=α^n–β^n,
I=(P15P14)P16P15(P15P14)P13P14\therefore I = \frac{(P_{15} - P_{14})P_{16} - P_{15}(P_{15} - P_{14})}{P_{13}P_{14}}
I=(P16P15)(P15P14)P13P14I = \frac{(P_{16} - P_{15})(P_{15} - P_{14})}{P_{13}P_{14}}
⇒$$I = \frac{(\alpha^{16} - \beta^{16} - \alpha^{15} + \beta^{15})(\alpha^{15} - \beta^{15} - \alpha^{14} + \beta^{14})}{(\alpha^{13} - \beta^{13})(\alpha^{14} - \beta^{14})}
⇒$$I = \frac{\alpha^{15}(\alpha - 1) - \beta^{15}(\beta - 1))(\alpha^{14}(\alpha - 1) - \beta^{14}(\beta - 1))}{(\alpha^{13} - \beta^{13})(\alpha^{14} - \beta^{14})}
As α2α=4α^2–α=4
⇒$$α−1=\frac{4}{α} and β1=4ββ−1=\frac{4}{β}
⇒$$I = \frac{(\alpha^{15} \cdot \frac{4}{\alpha} - \beta^{15} \cdot \frac{4}{\beta})(\alpha^{14} \cdot \frac{4}{\alpha} - \beta^{14} \cdot \frac{4}{\beta})}{(\alpha^{13} - \beta^{13})(\alpha^{14} - \beta^{14})}
I=16(α14β14)(α13β13)(α14β14)(α13β13)I = \frac{16(\alpha^{14} - \beta^{14})(\alpha^{13} - \beta^{13})}{(\alpha^{14} - \beta^{14})(\alpha^{13} - \beta^{13})}
=16
So, the answer is 16.