Solveeit Logo

Question

Mathematics Question on Geometric Progression

Let a,ar,ar2,a, ar, ar^2, \dots be an infinite G.P. If n=0arn=57andn=0a3r3n=9747,\sum_{n=0}^\infty ar^n = 57 \quad \text{and} \quad \sum_{n=0}^\infty a^3 r^{3n} = 9747, then a+18ra + 18r is equal to:

A

27

B

46

C

38

D

31

Answer

31

Explanation

Solution

We are given the following information about the infinite geometric series:

1. n=0arn=57\sum_{n=0}^{\infty} ar^n = 57
2. n=0a3nrn=9747\sum_{n=0}^{\infty} a3^nr^n = 9747

We need to find the value of a+18ra + 18r.

Step 1: Use the formula for the sum of an infinite geometric series

The sum of an infinite geometric series n=0arn\sum_{n=0}^{\infty} ar^n is given by the formula:

S=a1rS = \frac{a}{1 - r}

From the first given equation:

n=0arn=57\sum_{n=0}^{\infty} ar^n = 57

Substitute this into the formula:

a1r=57    a=57(1r)(Equation I)\frac{a}{1 - r} = 57 \implies a = 57(1 - r) \quad \text{(Equation I)}

Step 2: Use the second geometric series sum

Next, we are given the second series:

n=0a3nrn=9747\sum_{n=0}^{\infty} a3^nr^n = 9747

This is a geometric series with the first term a3ra3^r and common ratio 3. The sum of the infinite series is:

S=a3r13=a3r2S = \frac{a3^r}{1 - 3} = \frac{a3^r}{-2}

Substitute this into the given equation:

a3r2=9747    a3r=2×9747=19494(Equation II)\frac{a3^r}{-2} = 9747 \implies a3^r = -2 \times 9747 = -19494 \quad \text{(Equation II)}

Step 3: Solve the system of equations

Now, we have two equations:

1. a=57(1r)a = 57(1 - r)
2. a3r=19494a3^r = -19494

Substitute Equation I into Equation II:

57(1r)3r=1949457(1 - r)3^r = -19494

Simplify:

(1r)3r=1949457=342(1 - r)3^r = \frac{-19494}{57} = -342

Now, cube both sides of Equation I to eliminate rr:

(1r)3=5739717=19(1 - r)^3 = \frac{57^3}{9717} = 19

Thus:

(1r)3=19    1r=23(1 - r)^3 = 19 \implies 1 - r = \frac{2}{3}

So:

r=123=13r = 1 - \frac{2}{3} = \frac{1}{3}

Step 4: Calculate aa and a+18ra + 18r

Now substitute r=23r = \frac{2}{3} back into Equation I:

a=57×(123)=57×13=19a = 57 \times \left(1 - \frac{2}{3}\right) = 57 \times \frac{1}{3} = 19

Now, calculate a+18ra + 18r:

a+18r=19+18×23=19+12=31a + 18r = 19 + 18 \times \frac{2}{3} = 19 + 12 = 31

Thus, the correct answer is:

31