Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Let AA and BB denote the statements A:cosα+cosβ+cosγ=0A: cos\,\alpha + cos\,\beta + cos \,\gamma = 0 B:sinα+sinβ+sinγ=0B: sin \alpha + sin\, \beta + sin\,\gamma = 0 If cos(βγ)+cos(γα)+cos(αβ)=32cos\left(\beta-\gamma\right)+cos\left(\gamma-\alpha\right)+cos\left(\alpha-\beta\right)=-\frac{3}{2}, then

A

AA is true and BB is false

B

AA is false and BB is true

C

both AA and BB are true

D

both AA and BB are false

Answer

both AA and BB are true

Explanation

Solution

cos(βγ)+cos(γα)+cos(αβ)=32 cos\left(\beta-\gamma\right)+cos\left(\gamma-\alpha\right)+cos\left(\alpha-\beta\right)=-\frac{3}{2} \Rightarrow2\left[cos\left(??- ?\right) + cos\left(? - a\right) + cos\left(a - ??right)\right]+ 3 = 0 \Rightarrow 2\left[cos\left(??- ?\right) + cos\left(? - a\right) + cos\left(a - ??right)\right]+sin^{2}\, a + cos^{2}\, a + sin^{2}\,??+ cos^{2}\, ??+ sin^{2}\, ? + cos^{2}\, ? = 0 (sina+sin??+sin?)2+(cosα+cosβ+cosγ)2=0\Rightarrow \left(sin\,a + sin\,??+ sin\,?\right)^{2}+\left(cos\,\alpha+cos\,\beta+cos\,\gamma\right)^{2}=0