Solveeit Logo

Question

Question: Let A and B be two square matrices of order 2 such that \(A^{-1}B = 2I\) and \(A^{-3} + B^{-3} = A\)...

Let A and B be two square matrices of order 2 such that A1B=2IA^{-1}B = 2I and A3+B3=AA^{-3} + B^{-3} = A. If λ(A2B1+A1B2)=B\lambda\bigl(A^{-2}B^{-1} + A^{-1}B^{-2}\bigr) = B then find the value of λ\lvert \lambda\rvert.

Answer

3

Explanation

Solution

Step 1: Express BB in terms of AA.
From A1B=2IA^{-1}B = 2I, we get

B=2A.B = 2A.

Step 2: Use the second equation to relate powers of AA.

A3+B3=AA3+(2A)3=AA3+18A3=A98A3=A.A^{-3} + B^{-3} = A \quad\Longrightarrow\quad A^{-3} + (2A)^{-3} = A \quad\Longrightarrow\quad A^{-3} + \tfrac{1}{8}A^{-3} = A \quad\Longrightarrow\quad \tfrac{9}{8}A^{-3} = A.

Multiply both sides by A3A^3:

98I=A4A4=98IA3=89A.\frac{9}{8}I = A^4 \quad\Longrightarrow\quad A^4 = \frac{9}{8}I \quad\Longrightarrow\quad A^{-3} = \frac{8}{9}A.

Step 3: Compute A2B1+A1B2A^{-2}B^{-1} + A^{-1}B^{-2}.

A2B1=A2(2A)1=12A3,A1B2=A1(2A)2=14A3.A^{-2}B^{-1} = A^{-2}(2A)^{-1} = \tfrac12A^{-3}, \quad A^{-1}B^{-2} = A^{-1}(2A)^{-2} = \tfrac14A^{-3}.

So their sum is

A2B1+A1B2=12A3+14A3=34A3=3489A=23A.A^{-2}B^{-1} + A^{-1}B^{-2} = \tfrac12A^{-3} + \tfrac14A^{-3} = \tfrac34\,A^{-3} = \tfrac34\cdot\frac{8}{9}A = \frac{2}{3}A.

Step 4: Solve for λ\lambda.
The given equation is

λ(A2B1+A1B2)=B    λ23A=2A.\lambda\bigl(A^{-2}B^{-1} + A^{-1}B^{-2}\bigr) = B \;\Longrightarrow\; \lambda\cdot\frac{2}{3}A = 2A.

Cancel AA (invertible) to get

λ23=2λ=3.\lambda\cdot\tfrac{2}{3} = 2 \quad\Longrightarrow\quad \lambda = 3.

Therefore, λ=3\lvert \lambda\rvert = 3.