Solveeit Logo

Question

Mathematics Question on Matrices and Determinants

Let AA and BB be two square matrices of order 3 such that A=3|A| = 3 and B=2|B| = 2. Then AA(adj(2A))1(adj(4B))(adj(AB))1AA|A^\top A (\text{adj}(2A))^{-1} (\text{adj}(4B)) (\text{adj}(AB))^{-1} A A^\top| is equal to:

A

64

B

81

C

32

D

108

Answer

64

Explanation

Solution

Given: A=3,B=2|A| = 3, \quad |B| = 2 A(adj(2A))1(adj(4B))(adj(AB))1AA=3×3×(adj(2A))1×adj(4B)×(adj(AB))1×3×3|A^{\top} (\text{adj}(2A))^{-1} (\text{adj}(4B)) (\text{adj}(AB))^{-1} AA^{\top}| = 3 \times 3 \times |(\text{adj}(2A))^{-1}| \times |\text{adj}(4B)| \times |(\text{adj}(AB))^{-1}| \times 3 \times 3

Breaking it into steps: =1adj(2A)×212×22×1adj(AB)= \frac{1}{|\text{adj}(2A)|} \times 2^{12} \times 2^2 \times \frac{1}{|\text{adj}(AB)|}

Now calculating the determinant of adjugates: =126adjA×122×32(for adj(2A))= \frac{1}{2^6 |\text{adj} A|} \times \frac{1}{2^2 \times 3^2} \quad (\text{for } |\text{adj}(2A)|) =1adjB×adjA(for adj(AB))= \frac{1}{|\text{adj} B| \times |\text{adj} A|} \quad (\text{for } |\text{adj}(AB)|)

Further simplification: =1212×32= \frac{1}{2^{12} \times 3^2}

Simplifying: =3426×32×212×2222×32= \frac{3^4}{2^6 \times 3^2} \times \frac{2^{12} \times 2^2}{2^2 \times 3^2}

Combining terms: =64= 64