Solveeit Logo

Question

Mathematics Question on Probability

Let AA and BB be two mutually exclusive events such that P(ABc)=0.25P(A\cap {{B}^{c}})=0.25 and P(AcB)=0.5P({{A}^{c}}\cap B)=0.5 . Then, P(ABc)P\\{(A\cup {{B}^{c}})\\} is equal to

A

0.250.25

B

0.500.50

C

0.750.75

D

0.400.40

Answer

0.250.25

Explanation

Solution

The correct option is(A): 0.25.

Given, P(ABc)=0.25P(A\cap {{B}^{c}})=0.25 and P(AcB)=0.5P({{A}^{c}}\cap B)=0.5
\therefore P(AB)c=1P(AB)P\\{{{(A\cup B)}^{c}}\\}=1-P(A\cup B)
=1P(ABc)+P(AcB)+P(AB)=1-\\{P(A\cap {{B}^{c}})+P({{A}^{c}}\cap B)+P(A\cap B)\\}
=1(0.25+0.5+0)=1-(0.25+0.5+0)
[ \because A and B are mutually exclusive events
P(AB)=0P(A\cap B)=0 ] =10.75=0.25=1-0.75=0.25