Solveeit Logo

Question

Mathematics Question on Determinants

Let AA and BB be two invertible matrices of order 3×33 \times 3. If det(ABAT)=8\text{det} (ABA^T) = 8 and det(AB1)=8\text{det} (AB^{-1}) = 8, then det(BA1BT)\text{det} (BA^{-1} BT) is equal to :

A

1616

B

116\frac{1}{16}

C

14\frac{1}{4}

D

11

Answer

116\frac{1}{16}

Explanation

Solution

A2.B=8\left|A\right|^{2} .\left|B\right| =8 and AB=8A=4\frac{\left|A\right|}{\left|B\right|} = 8 \Rightarrow\left|A\right| = 4 and B=12 \left|B\right| = \frac{1}{2}
det(BA1.BT)=14×14=116\therefore \det\left(BA^{-1}.B^{T}\right) = \frac{1}{4} \times\frac{1}{4} = \frac{1}{16}