Solveeit Logo

Question

Mathematics Question on Probability

Let AA and BB be two events with P(Ac)=0.3,P(B)=0.4P\left(A^{c}\right)=0.3, P\left(B\right)=0.4 and P(ABc)=0.5P\left(A\cap B^{c}\right)=0.5 Then P(BABc)P\left(B|A \cup B^{c} \right) is equal to

A

14\frac{1}{4}

B

13\frac{1}{3}

C

12\frac{1}{2}

D

23\frac{2}{3}

Answer

14\frac{1}{4}

Explanation

Solution

The correct answer is A:14\frac{1}{4}
Given that;
P(Ac)=0.3,P(B)=0.4P(A^c)=0.3,P(B)=0.4
P(A)=1P(Ac)=10.3=0.7\therefore P(A)=1-P(A^c)=1-0.3=0.7
P(B)=10.4=0.6P(B)=1-0.4=0.6
Now, P(BABc)=P(B(ABc))P(ABc)P\left(\frac{B}{A \cup B^{c}}\right)=\frac{P\left(B \cap\left(A \cup B^{c}\right)\right)}{P\left(A \cup B^{c}\right)}
=P(AB)P(A)+P(Bc)P(ABc)=\frac{P(A \cap B)}{P(A)+P\left(B^{c}\right)-P\left(A \cap B^{c}\right)}
=P(A)P(ABc)P(A)+P(Bc)P(ABc)=\frac{P(A)-P\left(A \cap B^{c}\right)}{P(A)+P\left(B^{c}\right)-P\left(A \cap B^{c}\right)}
=0.70.50.7+0.60.5=\frac{0.7-0.5}{0.7+0.6-0.5}
=0.20.8=14=\frac{0.2}{0.8}=\frac{1}{4}
sets