Solveeit Logo

Question

Question: Let A and B be two events such that P(A) = 0.3, P(B) = 0.6 and $P(\frac{B}{A})$ = 0.5. Then $P(\frac...

Let A and B be two events such that P(A) = 0.3, P(B) = 0.6 and P(BA)P(\frac{B}{A}) = 0.5. Then P(AB)P(\frac{\overline{A}}{\overline{B}}) equals

A

34\frac{3}{4}

B

58\frac{5}{8}

C

940\frac{9}{40}

D

14\frac{1}{4}

Answer

58\frac{5}{8}

Explanation

Solution

Here's how to solve this problem using conditional probability and De Morgan's law:

  1. Calculate P(AB)P(A \cap B) using P(BA)=P(AB)P(A)P(\frac{B}{A}) = \frac{P(A \cap B)}{P(A)}:

    P(AB)=P(BA)×P(A)=0.5×0.3=0.15P(A \cap B) = P(\frac{B}{A}) \times P(A) = 0.5 \times 0.3 = 0.15

  2. Calculate P(AB)P(A \cup B) using:

    P(AB)=P(A)+P(B)P(AB)=0.3+0.60.15=0.75P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.3 + 0.6 - 0.15 = 0.75

  3. Calculate P(AB)P(\overline{A} \cap \overline{B}) using De Morgan's law:

    P(AB)=P(AB)=1P(AB)=10.75=0.25P(\overline{A} \cap \overline{B}) = P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - 0.75 = 0.25

  4. Calculate P(B)P(\overline{B}):

    P(B)=1P(B)=10.6=0.4P(\overline{B}) = 1 - P(B) = 1 - 0.6 = 0.4

  5. Calculate P(AB)P(\frac{\overline{A}}{\overline{B}}):

    P(AB)=P(AB)P(B)=0.250.4=2540=58P(\frac{\overline{A}}{\overline{B}}) = \frac{P(\overline{A} \cap \overline{B})}{P(\overline{B})} = \frac{0.25}{0.4} = \frac{25}{40} = \frac{5}{8}

Therefore, P(AB)=58P(\frac{\overline{A}}{\overline{B}}) = \frac{5}{8}.