Solveeit Logo

Question

Mathematics Question on Probability

Let AA and BB be two events such that P(AB)=P(A)+P(B)P(A)P(B).P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(A\right)P\left(B\right). If 0<P(A)<10 < P\left(A\right)< 1 and 0<P(B)<10 < P\left(B\right)< 1 , then P(AB)=P\left(A\cup B\right)^{'}=

A

1-P(A)

B

1-P(A')

C

1-P(A)P(B)

D

[1-P(A)]P(B')

Answer

[1-P(A)]P(B')

Explanation

Solution

Given, P(AB)=P(A)+P(B)P(P(A \cup B)=P(A)+P(B)-P( A) P(B)P(B)
P(AB)=1P(AB)\therefore P(A \cup B)^{'}=1-P(A \cup B)
=1[P(A)+P(B)P(A)P(B)]=1-[P(A)+P(B)-P(A) P(B)]
=1[1P(A)]P(B)[1P(A)]=1[1-P(A)]-P(B)[1-P(A)]
=[1P(A)][1P(B)]=[1-P(A)][1-P(B)]
=[1P(A)]P(B)=[1-P(A)] P\left(B^{'}\right)