Solveeit Logo

Question

Question: Let *A* and *B* be two events such that \(P ( A ) = 0.3\)and \(P ( A \cup B ) = 0.8\). If *A* and *...

Let A and B be two events such that P(A)=0.3P ( A ) = 0.3and

P(AB)=0.8P ( A \cup B ) = 0.8. If A and B are independent events, then

P(B)=P ( B ) =

A

56\frac { 5 } { 6 }

B

57\frac { 5 } { 7 }

C

35\frac { 3 } { 5 }

D

25\frac { 2 } { 5 }

Answer

57\frac { 5 } { 7 }

Explanation

Solution

Here P(AB)=0.8P ( A \cup B ) = 0.8, P(A)=0.3P ( A ) = 0.3 and A and B are

independent events.

Let P(B)=xP ( B ) = x . \therefore P(AB)=P(A)+P(B)P(AB)P ( A \cup B ) = P ( A ) + P ( B ) - P ( A \cap B )

Ž P(AB)=P(A)+P(B)P(A)P(B)P ( A \cup B ) = P ( A ) + P ( B ) - P ( A ) \cdot P ( B )

Ž 0.8=0.3+x0.3x0.8 = 0.3 + x - 0.3 x Ž x=57x = \frac { 5 } { 7 } .