Solveeit Logo

Question

Question: Let A and B be the two sets such that \[n\left( A-B \right)=60+3x\], \[n\left( B-A \right)=8x\] and ...

Let A and B be the two sets such that n(AB)=60+3xn\left( A-B \right)=60+3x, n(BA)=8xn\left( B-A \right)=8x and n(AB)=x4n\left( A\cap B \right)=x-4 then draw a Venn diagram to illustrate this information. If n(A)=n(B)n\left( A \right)=n\left( B \right) then find
(a) The value of xx
(b) n(AB)n\left( A\cup B \right)

Explanation

Solution

We solve this problem by using the Venn diagrams of sets. The Venn diagrams represent the diagrammatic representation of sets inside the universal set μ'\mu '
For solving the first part we use the given condition n(A)=n(B)n\left( A \right)=n\left( B \right) along with the formulas of sets that is

& n\left( A \right)=n\left( A-B \right)+n\left( A\cap B \right) \\\ & n\left( B \right)=n\left( B-A \right)+n\left( A\cap B \right) \\\ \end{aligned}$$ For solving second part we use the general formula of sets that is $$n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)$$ **Complete step-by-step solution** We are given that $$n\left( A-B \right)=60+3x$$, $$n\left( B-A \right)=8x$$ and $$n\left( A\cap B \right)=x-4$$ Let us draw a Venn diagram that represents the given information then we get ![](https://www.vedantu.com/question-sets/f58550cd-6c83-466b-b517-353903e2a2c91802044829692225554.png) (a) The value of $$x$$ We are given that $$\Rightarrow n\left( A \right)=n\left( B \right).......equation(i)$$ We know that the formulas of sets that is $$\begin{aligned} & n\left( A \right)=n\left( A-B \right)+n\left( A\cap B \right) \\\ & n\left( B \right)=n\left( B-A \right)+n\left( A\cap B \right) \\\ \end{aligned}$$ By using the above formulas to equation (i) we get $$\begin{aligned} & \Rightarrow n\left( A-B \right)+n\left( A\cap B \right)=n\left( B-A \right)+n\left( A\cap B \right) \\\ & \Rightarrow n\left( A-B \right)=n\left( B-A \right) \\\ \end{aligned}$$ By substituting the required values in above equation we get $$\begin{aligned} & \Rightarrow 60+3x=8x \\\ & \Rightarrow 5x=60 \\\ & \Rightarrow x=12 \\\ \end{aligned}$$ Therefore, the value of $$x$$ is 12 (b) $$n\left( A\cup B \right)$$ We know that the direct formula of union of sets that is $$n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)$$ By substituting the required values from the formulas we used before in above equation we get $$\begin{aligned} & \Rightarrow n\left( A\cup B \right)=\left( n\left( A-B \right)+n\left( A\cap B \right) \right)+\left( n\left( B-A \right)+n\left( A\cap B \right) \right)-n\left( A\cap B \right) \\\ & \Rightarrow n\left( A\cup B \right)=n\left( A-B \right)+n\left( B-A \right)+n\left( A\cap B \right) \\\ \end{aligned}$$ Now by substituting the required values in terms of $$x$$ in above equation we get $$\begin{aligned} & \Rightarrow n\left( A\cup B \right)=60+3x+8x+x-4 \\\ & \Rightarrow n\left( A\cup B \right)=12x+56 \\\ \end{aligned}$$ Now, by substituting $$x=12$$ in above equation we get $$\begin{aligned} & \Rightarrow n\left( A\cup B \right)=12\times 12+56 \\\ & \Rightarrow n\left( A\cup B \right)=200 \\\ \end{aligned}$$ **Therefore the value of $$n\left( A\cup B \right)$$ is 200.** **Note:** Students may make mistakes in the Venn diagram representation. Venn diagrams are the diagrammatic representation of sets in the universal set $$'\mu '$$ So the Venn diagram must be drawn as ![](https://www.vedantu.com/question-sets/ddb0c283-7b10-4481-926f-c19fd28f65fc1067608135152901021.png) But students may miss the universal set $$'\mu '$$ and draw the Venn diagram as ![](https://www.vedantu.com/question-sets/93ab449d-ee22-4e61-b8a7-172db58993d17946285044424047945.png) This will be the wrong representation because all the sets are subsets of a universal set $$'\mu '$$ which is very important to represent in the Venn diagram.