Solveeit Logo

Question

Mathematics Question on Differentiability

Let aa and bb be real constants such that the function ff defined by f(x)={x2+3x+a,x1 bx+2,x>1f(x) = \begin{cases} x^2 + 3x + a, & x \leq 1 \\\ bx + 2, & x>1 \end{cases}be differentiable on R\mathbb{R}. Then, the value of 22f(x)dx\int_{-2}^{2} f(x) \, dx equals

A

156\frac{15}{6}

B

196\frac{19}{6}

C

21

D

17

Answer

17

Explanation

Solution

To ensure continuity at x=1x = 1:

f(1)=4+a,f(1+)=b+2.f(1^-) = 4 + a, \quad f(1^+) = b + 2.

Setting f(1)=f(1+)f(1^-) = f(1^+):

4+a=b+2ab=2.4 + a = b + 2 \Rightarrow a - b = -2.

To ensure differentiability at x=1x = 1:

f(1)=5,f(1+)=b.f'(1^-) = 5, \quad f'(1^+) = b.

Setting f(1)=f(1+)f'(1^-) = f'(1^+):

b=5.b = 5.

Substituting b=5b = 5 into ab=2a - b = -2:

a=3.a = 3.

Calculate 22f(x)dx\int_{-2}^{2} f(x) \, dx:

22f(x)dx=21(x2+3x+3)dx+12(5x+2)dx.\int_{-2}^{2} f(x) \, dx = \int_{-2}^{1} (x^2 + 3x + 3) \, dx + \int_{1}^{2} (5x + 2) \, dx.

Evaluating each integral:

- First integral:

21(x2+3x+3)dx=152.\int_{-2}^{1} (x^2 + 3x + 3) \, dx = \frac{15}{2}.

- Second integral:

12(5x+2)dx=17.\int_{1}^{2} (5x + 2) \, dx = 17.

The total value is:

22f(x)dx=17.\int_{-2}^{2} f(x) \, dx = 17.