Question
Mathematics Question on Differentiability
Let a and b be real constants such that the function f defined by f(x)={x2+3x+a, bx+2,x≤1x>1be differentiable on R. Then, the value of ∫−22f(x)dx equals
A
615
B
619
C
21
D
17
Answer
17
Explanation
Solution
To ensure continuity at x=1:
f(1−)=4+a,f(1+)=b+2.
Setting f(1−)=f(1+):
4+a=b+2⇒a−b=−2.
To ensure differentiability at x=1:
f′(1−)=5,f′(1+)=b.
Setting f′(1−)=f′(1+):
b=5.
Substituting b=5 into a−b=−2:
a=3.
Calculate ∫−22f(x)dx:
∫−22f(x)dx=∫−21(x2+3x+3)dx+∫12(5x+2)dx.
Evaluating each integral:
- First integral:
∫−21(x2+3x+3)dx=215.
- Second integral:
∫12(5x+2)dx=17.
The total value is:
∫−22f(x)dx=17.