Solveeit Logo

Question

Mathematics Question on Vectors

Let aa and bb be positive real numbers. Suppose PQ=ai^+bj^\overrightarrow{P Q}=a \hat{i}+b \hat{j} and PS=ai^bj^\overrightarrow{P S}=a \hat{i}-b \hat{j} are adjacent sides of a parallelogram PQRSPQRS. Let u\vec{ u } and v\vec{ v } be the projection vectors of w=i^+j^\vec{ w }=\hat{ i }+\hat{ j } along PQ\overrightarrow{ PQ } and PS\overrightarrow{ PS }, respectively. If u+v=w|\vec{u}|+|\vec{v}|=|\vec{w}| and if the area of the parallelogram PQRSPQRS is 88, then which of the following statements is/are TRUE?

A

a+b=4a+b=4

B

ab=2a-b=2

C

The length of the diagonal PRPR of the parallelogram PQRSPQRS is 44

D

w\vec{ w } is an angle bisector of the vectors PQ\overrightarrow{ PQ } and PS\overrightarrow{ PS }

Answer

a+b=4a+b=4

Explanation

Solution

(A) a+b=4a+b=4
(C) The length of the diagonal PRPR of the parallelogram PQRSPQRS is 44