Solveeit Logo

Question

Mathematics Question on Straight lines

Let AA and BB be points (8,10)(8,\,\,10) and (18,20),(18,\,20), respectively. If the point QQ divides AB externally in the ratio 2:32:3 and MM is the SS mid-point of ABAB, then the length MQMQ is equal to

A

2525

B

5345\sqrt{34}

C

25225\sqrt{2}

D

5265\sqrt{26}

Answer

25225\sqrt{2}

Explanation

Solution

Given points are A(8,10)A(8,\,\,10) and B(18,20)B(18,\,20) . M is the mid-point of AB. Coordinates of M=(8+182.10+202)=(13,15)M=\left( \frac{8+18}{2}.\frac{10+20}{2} \right)=(13,15) Point Q divides AB externally in the ration of 2:32:3 Day The coordinates of Q
=(2×183×823,2×203×1023)=\left( \frac{2\times 18-3\times 8}{2-3},\,\frac{2\times 20-3\times 10}{2-3} \right)
=(36241,40301)=\left( \frac{36-24}{-1},\frac{40-30}{-1} \right)
=(12,10)=(-12,\,-10)
Now, length MQ=(13+12)2+(15+10)2MQ=\sqrt{{{(13+12)}^{2}}+{{(15+10)}^{2}}}
(25)2+(25)2\sqrt{{{(25)}^{2}}+{{(25)}^{2}}} 2×(25)2\sqrt{2\times {{(25)}^{2}}}
=252=25\sqrt{2}