Solveeit Logo

Question

Question: Let A = $[a_{ij}]_{2 \times 2}$ where $a_{ij} \neq 0$ for all i, j and $A^2 = I$. Let a be the sum o...

Let A = [aij]2×2[a_{ij}]_{2 \times 2} where aij0a_{ij} \neq 0 for all i, j and A2=IA^2 = I. Let a be the sum of all diagonal elements of A and b=Ab = |A|, then 90a2+16b23\frac{90a^2 + 16b^2}{3} is equal to

Answer

16/3

Explanation

Solution

Let the matrix A be A=[pqrs]A = \begin{bmatrix} p & q \\ r & s \end{bmatrix}. Given that aij0a_{ij} \neq 0 for all i, j, it implies p,q,r,s0p, q, r, s \neq 0.

The sum of all diagonal elements of A is a=p+sa = p+s. The determinant of A is b=A=psqrb = |A| = ps - qr.

We are given the condition A2=IA^2 = I, where I=[1001]I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} is the identity matrix. Let's compute A2A^2: A2=[pqrs][pqrs]=[p2+qrpq+qsrp+srrq+s2]A^2 = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} p^2+qr & pq+qs \\ rp+sr & rq+s^2 \end{bmatrix}.

Equating A2A^2 to II: [p2+qrpq+qsrp+srrq+s2]=[1001]\begin{bmatrix} p^2+qr & pq+qs \\ rp+sr & rq+s^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.

From this matrix equality, we get a system of equations:

  1. p2+qr=1p^2+qr = 1
  2. pq+qs=0    q(p+s)=0pq+qs = 0 \implies q(p+s) = 0
  3. rp+sr=0    r(p+s)=0rp+sr = 0 \implies r(p+s) = 0
  4. rq+s2=1rq+s^2 = 1

From equation (2), since q0q \neq 0 (given aij0a_{ij} \neq 0), we must have p+s=0p+s = 0. This implies s=ps = -p.

Let's verify this with equation (3). Since r0r \neq 0 (given aij0a_{ij} \neq 0), we also get p+s=0p+s=0, which is consistent.

Now we can find the value of 'a': a=p+s=0a = p+s = 0.

Next, let's find the value of 'b'. b=psqrb = ps - qr. Substitute s=ps = -p into the expression for 'b': b=p(p)qr=p2qrb = p(-p) - qr = -p^2 - qr.

From equation (1), we have p2+qr=1p^2+qr = 1. We can rewrite this as qr=1p2qr = 1 - p^2.

Substitute qr=1p2qr = 1 - p^2 into the expression for 'b': b=p2(1p2)b = -p^2 - (1 - p^2) b=p21+p2b = -p^2 - 1 + p^2 b=1b = -1.

So, we have a=0a=0 and b=1b=-1.

Finally, we need to calculate the value of 90a2+16b23\frac{90a^2 + 16b^2}{3}. Substitute the values of 'a' and 'b': 90(0)2+16(1)23\frac{90(0)^2 + 16(-1)^2}{3} =90(0)+16(1)3= \frac{90(0) + 16(1)}{3} =0+163= \frac{0 + 16}{3} =163= \frac{16}{3}.

The condition aij0a_{ij} \neq 0 is essential. For example, if p=1p=1, then s=1s=-1. From p2+qr=1p^2+qr=1, we get 12+qr=11^2+qr=1, which means qr=0qr=0. This would imply q=0q=0 or r=0r=0, contradicting the condition aij0a_{ij} \neq 0. Thus, pp cannot be 11 or 1-1. For instance, if p=2p=2, then s=2s=-2. Then qr=1p2=14=3qr = 1-p^2 = 1-4 = -3. We can choose q=1q=1 and r=3r=-3. This gives A=[2132]A = \begin{bmatrix} 2 & 1 \\ -3 & -2 \end{bmatrix}, which satisfies all given conditions. For this matrix, a=2+(2)=0a=2+(-2)=0 and b=(2)(2)(1)(3)=4+3=1b=(2)(-2)-(1)(-3)=-4+3=-1, confirming our derived values for 'a' and 'b'.

The final answer is 163\boxed{\frac{16}{3}}.

Explanation of the solution:

  1. Represent the matrix A as [pqrs]\begin{bmatrix} p & q \\ r & s \end{bmatrix}.
  2. Use the condition A2=IA^2=I to set up equations for the elements p,q,r,sp, q, r, s.
  3. From the off-diagonal elements, q(p+s)=0q(p+s)=0 and r(p+s)=0r(p+s)=0. Since q,r0q, r \neq 0, it implies p+s=0p+s=0.
  4. This directly gives a=p+s=0a = p+s = 0.
  5. From the diagonal elements, p2+qr=1p^2+qr=1.
  6. Calculate b=A=psqrb=|A|=ps-qr. Substitute s=ps=-p and qr=1p2qr=1-p^2 into the expression for bb.
  7. This yields b=p(p)(1p2)=p21+p2=1b = p(-p) - (1-p^2) = -p^2 - 1 + p^2 = -1.
  8. Substitute a=0a=0 and b=1b=-1 into the given expression 90a2+16b23\frac{90a^2 + 16b^2}{3} to get the final value.