Solveeit Logo

Question

Question: Let $A = \{a_{ij}\}$ be a $3 \times 3$ matrix, where, $a_{ij} = \begin{cases} (-1)^{j-i} \quad \text...

Let A={aij}A = \{a_{ij}\} be a 3×33 \times 3 matrix, where, aij={(1)jiif i<j2if i=j(1)i+jif i>ja_{ij} = \begin{cases} (-1)^{j-i} \quad \text{if } i < j \\ 2 \qquad \quad \text{if } i = j \\ (-1)^{i+j} \quad \text{if } i > j \end{cases} and BB be a matrix of order 3×33 \times 3 and det(B)=2\det(B)=2.

Match each entry in List-I to the correct entries in List-II.

List-IList-II
(P)If det(3adj(2A1))=2m3n\det(3 \operatorname{adj}(2A^{-1})) = 2^m 3^n, then m+n=m+n =121
(Q)If $\operatorname{adj}(\operatorname{adj}(\operatorname{adj} 2A))= 2^p 3^q,then, then p+q =$
(R)If det(det(B)adj(5adj(B3)))=2r5s\det(\det(B) \operatorname{adj}(5 \operatorname{adj}(B^3))) = 2^r \cdot 5^s, then r+s=r+s =340
(S)If $3 \operatorname{adj}(3B
55
A

If det(3adj(2A1))=2m3n\det(3 \operatorname{adj}(2A^{-1})) = 2^m 3^n, then m+n=m+n =

B

If adj(adj(adj2A))=2p3q|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} 2A))| = 2^p 3^q, then p+q=p+q =

C

If det(det(B)adj(5adj(B3)))=2r5s\det(\det(B) \operatorname{adj}(5 \operatorname{adj}(B^3))) = 2^r \cdot 5^s, then r+s=r+s =

D

If 3adj(3BB2)=2u×3v|3 \operatorname{adj}(|3B|B^2)| = 2^u \times 3^v, then u+v=u+v =

Answer

P -> 5, Q -> 3, R -> 1, S -> 2

Explanation

Solution

First, let's construct the matrix AA and calculate its determinant. The elements of the 3×33 \times 3 matrix A={aij}A = \{a_{ij}\} are given by: aij={(1)jiif i<j2if i=j(1)i+jif i>ja_{ij} = \begin{cases} (-1)^{j-i} \quad \text{if } i < j \\ 2 \qquad \quad \text{if } i = j \\ (-1)^{i+j} \quad \text{if } i > j \end{cases}

So, the matrix AA is: A=(a11a12a13a21a22a23a31a32a33)=(2(1)21(1)31(1)2+12(1)32(1)3+1(1)3+22)=(211121112)A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 2 & (-1)^{2-1} & (-1)^{3-1} \\ (-1)^{2+1} & 2 & (-1)^{3-2} \\ (-1)^{3+1} & (-1)^{3+2} & 2 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}

Now, calculate det(A)\det(A): det(A)=2(22(1)(1))(1)((1)2(1)1)+1((1)(1)21)\det(A) = 2(2 \cdot 2 - (-1)(-1)) - (-1)((-1) \cdot 2 - (-1) \cdot 1) + 1((-1)(-1) - 2 \cdot 1) det(A)=2(41)+1(2+1)+1(12)\det(A) = 2(4 - 1) + 1(-2 + 1) + 1(1 - 2) det(A)=2(3)+1(1)+1(1)\det(A) = 2(3) + 1(-1) + 1(-1) det(A)=611=4\det(A) = 6 - 1 - 1 = 4.

We are given that BB is a 3×33 \times 3 matrix and det(B)=2\det(B)=2. We will use the following properties for an n×nn \times n matrix MM, where n=3n=3:

  1. det(kM)=kndet(M)=k3det(M)\det(kM) = k^n \det(M) = k^3 \det(M)
  2. det(adj(M))=(det(M))n1=(det(M))2\det(\operatorname{adj}(M)) = (\det(M))^{n-1} = (\det(M))^2
  3. adj(adj(M))=(det(M))n2M=det(M)M\operatorname{adj}(\operatorname{adj}(M)) = (\det(M))^{n-2} M = \det(M) M
  4. det(M1)=(det(M))1\det(M^{-1}) = (\det(M))^{-1}
  5. det(Mk)=(det(M))k\det(M^k) = (\det(M))^k

**(P) If det(3adj(2A1))=2m3n\det(3 \operatorname{adj}(2A^{-1})) = 2^m 3^n, then m+n=m+n =} Let M=2A1M = 2A^{-1}. det(3adj(M))=33det(adj(M))\det(3 \operatorname{adj}(M)) = 3^3 \det(\operatorname{adj}(M)) (using property 1) =33(det(M))2= 3^3 (\det(M))^2 (using property 2) Now, calculate det(M)=det(2A1)\det(M) = \det(2A^{-1}): det(2A1)=23det(A1)\det(2A^{-1}) = 2^3 \det(A^{-1}) (using property 1) =23(det(A))1= 2^3 (\det(A))^{-1} (using property 4) =8(4)1=814=2= 8 \cdot (4)^{-1} = 8 \cdot \frac{1}{4} = 2. Substitute this back: det(3adj(2A1))=33(2)2=274=108\det(3 \operatorname{adj}(2A^{-1})) = 3^3 (2)^2 = 27 \cdot 4 = 108. To match 2m3n2^m 3^n: 108=427=2233108 = 4 \cdot 27 = 2^2 \cdot 3^3. So, m=2m=2 and n=3n=3. m+n=2+3=5m+n = 2+3 = 5. (P) matches with 5.

**(Q) If adj(adj(adj2A))=2p3q|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} 2A))| = 2^p 3^q, then p+q=p+q =} Let M=2AM = 2A. We need to calculate det(adj(adj(adjM)))\det(\operatorname{adj}(\operatorname{adj}(\operatorname{adj} M))). Using property 2: det(adj(X))=(det(X))2\det(\operatorname{adj}(X)) = (\det(X))^2. det(adj(adj(adjM)))=(det(adj(adjM)))2\det(\operatorname{adj}(\operatorname{adj}(\operatorname{adj} M))) = (\det(\operatorname{adj}(\operatorname{adj} M)))^2. Now, let's find det(adj(adjM))\det(\operatorname{adj}(\operatorname{adj} M)). Using property 3: adj(adjM)=det(M)M\operatorname{adj}(\operatorname{adj} M) = \det(M) M. So, det(adj(adjM))=det(det(M)M)\det(\operatorname{adj}(\operatorname{adj} M)) = \det(\det(M) M). Using property 1: det(det(M)M)=(det(M))3det(M)=(det(M))4\det(\det(M) M) = (\det(M))^3 \det(M) = (\det(M))^4. Substitute this back: det(adj(adj(adjM)))=((det(M))4)2=(det(M))8\det(\operatorname{adj}(\operatorname{adj}(\operatorname{adj} M))) = ((\det(M))^4)^2 = (\det(M))^8. Now, calculate det(M)=det(2A)\det(M) = \det(2A): det(2A)=23det(A)=84=32\det(2A) = 2^3 \det(A) = 8 \cdot 4 = 32. So, adj(adj(adj2A))=(32)8=(25)8=240|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} 2A))| = (32)^8 = (2^5)^8 = 2^{40}. To match 2p3q2^p 3^q: 240=2p3q2^{40} = 2^p \cdot 3^q. So, p=40p=40 and q=0q=0. p+q=40+0=40p+q = 40+0 = 40. (Q) matches with 3.

**(R) If det(det(B)adj(5adj(B3)))=2r5s\det(\det(B) \operatorname{adj}(5 \operatorname{adj}(B^3))) = 2^r \cdot 5^s, then r+s=r+s =} Given det(B)=2\det(B)=2. Let k=det(B)=2k = \det(B) = 2. We need to calculate det(kadj(5adj(B3)))\det(k \operatorname{adj}(5 \operatorname{adj}(B^3))). Using property 1: det(kadj(5adj(B3)))=k3det(adj(5adj(B3)))\det(k \operatorname{adj}(5 \operatorname{adj}(B^3))) = k^3 \det(\operatorname{adj}(5 \operatorname{adj}(B^3))). Substitute k=2k=2: 23det(adj(5adj(B3)))2^3 \det(\operatorname{adj}(5 \operatorname{adj}(B^3))). Using property 2: det(adj(X))=(det(X))2\det(\operatorname{adj}(X)) = (\det(X))^2. Let X=5adj(B3)X = 5 \operatorname{adj}(B^3). So, 23(det(5adj(B3)))22^3 (\det(5 \operatorname{adj}(B^3)))^2. Now, calculate det(5adj(B3))\det(5 \operatorname{adj}(B^3)). Let Y=B3Y = B^3. det(5adj(Y))=53det(adj(Y))\det(5 \operatorname{adj}(Y)) = 5^3 \det(\operatorname{adj}(Y)) (using property 1) =53(det(Y))2= 5^3 (\det(Y))^2 (using property 2) =53(det(B3))2= 5^3 (\det(B^3))^2. Now, calculate det(B3)\det(B^3): det(B3)=(det(B))3\det(B^3) = (\det(B))^3 (using property 5) =(2)3=8= (2)^3 = 8. Substitute this back: det(5adj(B3))=53(8)2=53(23)2=5326\det(5 \operatorname{adj}(B^3)) = 5^3 (8)^2 = 5^3 (2^3)^2 = 5^3 \cdot 2^6. Substitute this back into the main expression: 23(5326)2=23(532262)=23(56212)=23+1256=215562^3 (5^3 \cdot 2^6)^2 = 2^3 (5^{3 \cdot 2} \cdot 2^{6 \cdot 2}) = 2^3 (5^6 \cdot 2^{12}) = 2^{3+12} \cdot 5^6 = 2^{15} \cdot 5^6. To match 2r5s2^r \cdot 5^s: r=15r=15 and s=6s=6. r+s=15+6=21r+s = 15+6 = 21. (R) matches with 1.

**(S) If 3adj(3BB2)=2u×3v|3 \operatorname{adj}(|3B|B^2)| = 2^u \times 3^v, then u+v=u+v =} Given det(B)=2\det(B)=2. First, evaluate 3B=det(3B)|3B| = \det(3B): det(3B)=33det(B)=272=54\det(3B) = 3^3 \det(B) = 27 \cdot 2 = 54. So, we need to calculate 3adj(54B2)|3 \operatorname{adj}(54 B^2)|. Let k=54k = 54. 3adj(kB2)=33det(adj(kB2))|3 \operatorname{adj}(k B^2)| = 3^3 \det(\operatorname{adj}(k B^2)) (using property 1) =33(det(kB2))2= 3^3 (\det(k B^2))^2 (using property 2) Now, calculate det(kB2)\det(k B^2): det(kB2)=k3det(B2)\det(k B^2) = k^3 \det(B^2) (using property 1) =k3(det(B))2= k^3 (\det(B))^2 (using property 5) Substitute k=54k=54 and det(B)=2\det(B)=2: det(kB2)=(54)3(2)2=(233)322=23(33)322=233922=23+239=2539\det(k B^2) = (54)^3 (2)^2 = (2 \cdot 3^3)^3 \cdot 2^2 = 2^3 \cdot (3^3)^3 \cdot 2^2 = 2^3 \cdot 3^9 \cdot 2^2 = 2^{3+2} \cdot 3^9 = 2^5 \cdot 3^9. Substitute this back into the main expression: 33(2539)2=33(252392)=33(210318)=21033+18=2103213^3 (2^5 \cdot 3^9)^2 = 3^3 (2^{5 \cdot 2} \cdot 3^{9 \cdot 2}) = 3^3 (2^{10} \cdot 3^{18}) = 2^{10} \cdot 3^{3+18} = 2^{10} \cdot 3^{21}. To match 2u×3v2^u \times 3^v: u=10u=10 and v=21v=21. u+v=10+21=31u+v = 10+21 = 31. (S) matches with 2.

Matching List-I to List-II: (P) \to 5 (Q) \to 3 (R) \to 1 (S) \to 2