Question
Question: Let $A = \{a_{ij}\}$ be a $3 \times 3$ matrix, where, $a_{ij} = \begin{cases} (-1)^{j-i} \quad \text...
Let A={aij} be a 3×3 matrix, where, aij=⎩⎨⎧(−1)j−iif i<j2if i=j(−1)i+jif i>j and B be a matrix of order 3×3 and det(B)=2.
Match each entry in List-I to the correct entries in List-II.
List-I | List-II | ||
---|---|---|---|
(P) | If det(3adj(2A−1))=2m3n, then m+n= | 1 | 21 |
(Q) | If $ | \operatorname{adj}(\operatorname{adj}(\operatorname{adj} 2A)) | = 2^p 3^q,thenp+q =$ |
(R) | If det(det(B)adj(5adj(B3)))=2r⋅5s, then r+s= | 3 | 40 |
(S) | If $ | 3 \operatorname{adj}( | 3B |
5 | 5 |

If det(3adj(2A−1))=2m3n, then m+n=
If ∣adj(adj(adj2A))∣=2p3q, then p+q=
If det(det(B)adj(5adj(B3)))=2r⋅5s, then r+s=
If ∣3adj(∣3B∣B2)∣=2u×3v, then u+v=
P -> 5, Q -> 3, R -> 1, S -> 2
Solution
First, let's construct the matrix A and calculate its determinant. The elements of the 3×3 matrix A={aij} are given by: aij=⎩⎨⎧(−1)j−iif i<j2if i=j(−1)i+jif i>j
So, the matrix A is: A=a11a21a31a12a22a32a13a23a33=2(−1)2+1(−1)3+1(−1)2−12(−1)3+2(−1)3−1(−1)3−22=2−11−12−11−12
Now, calculate det(A): det(A)=2(2⋅2−(−1)(−1))−(−1)((−1)⋅2−(−1)⋅1)+1((−1)(−1)−2⋅1) det(A)=2(4−1)+1(−2+1)+1(1−2) det(A)=2(3)+1(−1)+1(−1) det(A)=6−1−1=4.
We are given that B is a 3×3 matrix and det(B)=2. We will use the following properties for an n×n matrix M, where n=3:
- det(kM)=kndet(M)=k3det(M)
- det(adj(M))=(det(M))n−1=(det(M))2
- adj(adj(M))=(det(M))n−2M=det(M)M
- det(M−1)=(det(M))−1
- det(Mk)=(det(M))k
**(P) If det(3adj(2A−1))=2m3n, then m+n=} Let M=2A−1. det(3adj(M))=33det(adj(M)) (using property 1) =33(det(M))2 (using property 2) Now, calculate det(M)=det(2A−1): det(2A−1)=23det(A−1) (using property 1) =23(det(A))−1 (using property 4) =8⋅(4)−1=8⋅41=2. Substitute this back: det(3adj(2A−1))=33(2)2=27⋅4=108. To match 2m3n: 108=4⋅27=22⋅33. So, m=2 and n=3. m+n=2+3=5. (P) matches with 5.
**(Q) If ∣adj(adj(adj2A))∣=2p3q, then p+q=} Let M=2A. We need to calculate det(adj(adj(adjM))). Using property 2: det(adj(X))=(det(X))2. det(adj(adj(adjM)))=(det(adj(adjM)))2. Now, let's find det(adj(adjM)). Using property 3: adj(adjM)=det(M)M. So, det(adj(adjM))=det(det(M)M). Using property 1: det(det(M)M)=(det(M))3det(M)=(det(M))4. Substitute this back: det(adj(adj(adjM)))=((det(M))4)2=(det(M))8. Now, calculate det(M)=det(2A): det(2A)=23det(A)=8⋅4=32. So, ∣adj(adj(adj2A))∣=(32)8=(25)8=240. To match 2p3q: 240=2p⋅3q. So, p=40 and q=0. p+q=40+0=40. (Q) matches with 3.
**(R) If det(det(B)adj(5adj(B3)))=2r⋅5s, then r+s=} Given det(B)=2. Let k=det(B)=2. We need to calculate det(kadj(5adj(B3))). Using property 1: det(kadj(5adj(B3)))=k3det(adj(5adj(B3))). Substitute k=2: 23det(adj(5adj(B3))). Using property 2: det(adj(X))=(det(X))2. Let X=5adj(B3). So, 23(det(5adj(B3)))2. Now, calculate det(5adj(B3)). Let Y=B3. det(5adj(Y))=53det(adj(Y)) (using property 1) =53(det(Y))2 (using property 2) =53(det(B3))2. Now, calculate det(B3): det(B3)=(det(B))3 (using property 5) =(2)3=8. Substitute this back: det(5adj(B3))=53(8)2=53(23)2=53⋅26. Substitute this back into the main expression: 23(53⋅26)2=23(53⋅2⋅26⋅2)=23(56⋅212)=23+12⋅56=215⋅56. To match 2r⋅5s: r=15 and s=6. r+s=15+6=21. (R) matches with 1.
**(S) If ∣3adj(∣3B∣B2)∣=2u×3v, then u+v=} Given det(B)=2. First, evaluate ∣3B∣=det(3B): det(3B)=33det(B)=27⋅2=54. So, we need to calculate ∣3adj(54B2)∣. Let k=54. ∣3adj(kB2)∣=33det(adj(kB2)) (using property 1) =33(det(kB2))2 (using property 2) Now, calculate det(kB2): det(kB2)=k3det(B2) (using property 1) =k3(det(B))2 (using property 5) Substitute k=54 and det(B)=2: det(kB2)=(54)3(2)2=(2⋅33)3⋅22=23⋅(33)3⋅22=23⋅39⋅22=23+2⋅39=25⋅39. Substitute this back into the main expression: 33(25⋅39)2=33(25⋅2⋅39⋅2)=33(210⋅318)=210⋅33+18=210⋅321. To match 2u×3v: u=10 and v=21. u+v=10+21=31. (S) matches with 2.
Matching List-I to List-II: (P) → 5 (Q) → 3 (R) → 1 (S) → 2