Solveeit Logo

Question

Mathematics Question on Sequence and series

Let a,a+ra, a + r and a+2ra + 2r be positive real numbers such that their product is 6464. Then the minimum value of a+2ra + 2r is equal to

A

4

B

3

C

2

D

44563

Answer

4

Explanation

Solution

We know AMGMA M \geq G M
a+(a+r)+(a+2r)3(a(a+r)(a+2r))13\frac{a+(a+r)+(a+2 r)}{3} \geq(a(a+r)(a+2 r))^{\frac{1}{3}}
3(a+r)3(64)13\Rightarrow \frac{3(a+r)}{3} \geq(64)^{\frac{1}{3}}
(a+r)4\Rightarrow (a+r) \geq 4
Also , 64=a(a+r)(a+2r)64=a(a+r)(a+2 r)
64(4r)×4(r+4)\Rightarrow 64 \geq(4-r) \times 4(r+4)
1616r2\Rightarrow 16 \geq 16-r^{2}
r20\Rightarrow r^{2} \leq 0
r=0\therefore r=0
Now, a+2r=4+0=4a+2 r=4+0=4