Solveeit Logo

Question

Mathematics Question on matrix transformation

Let A=A= [aija_{ij}]2×2_{2\times2} be a matrix and A2=IA^2 = I where aij0a_{ij} \neq0. If a sum of diagonal elements and b=det(A), then 3a2+4b23a^2+4b^2 is

A

10

B

12

C

4

D

8

Answer

4

Explanation

Solution

The correct answer is (C) : 4
Let A =\begin{bmatrix} p & q \\\r & s \end{bmatrix}
A2=[p2+qrpq+qs pr+rsqs+s2]A^2=\begin{bmatrix} p^2+qr & pq+qs \\\ pr+rs & qs+s^2 \end{bmatrix}
⇒ p2 +qr=1 (1) pq + qs = 0
⇒ q(p+s) = 0 (3)
⇒ s2 + qr =1 (2) pr + rs = 0
⇒ r(p+s) = 0 (4)
From , eqn (1) - eqn (2)
p2 = s2 ⇒ p+s=0
Now 3a2 + 4b2
= 3(p+s)2 + 4(ps-qr)
= 3.0 + 4(-p2-qr)2
= 4(p2 + qr )2
= 4