Question
Mathematics Question on matrix transformation
Let A= [aij]2×2 be a matrix and A2=I where aij=0. If a sum of diagonal elements and b=det(A), then 3a2+4b2 is
A
10
B
12
C
4
D
8
Answer
4
Explanation
Solution
The correct answer is (C) : 4
Let A =\begin{bmatrix} p & q \\\r & s \end{bmatrix}
A2=[p2+qr pr+rspq+qsqs+s2]
⇒ p2 +qr=1 (1) pq + qs = 0
⇒ q(p+s) = 0 (3)
⇒ s2 + qr =1 (2) pr + rs = 0
⇒ r(p+s) = 0 (4)
From , eqn (1) - eqn (2)
p2 = s2 ⇒ p+s=0
Now 3a2 + 4b2
= 3(p+s)2 + 4(ps-qr)
= 3.0 + 4(-p2-qr)2
= 4(p2 + qr )2
= 4