Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

Let A(a,b),B(3,4)A (a, b), B(3, 4) and (6,8)(-6, -8) respectively denote the centroid, circumcentre, and orthocentre of a triangle. Then, the distance of the point P(2a+3,7b+5)P(2a + 3, 7b + 5) from the line 2x+3y4=02x + 3y - 4 = 0 measured parallel to the line x2y1=0x - 2y - 1 = 0 is

A

1557\frac{15 \sqrt{5}}{7}

B

1756\frac{17 \sqrt{5}}{6}

C

1757\frac{17 \sqrt{5}}{7}

D

517\frac{\sqrt{5}}{17}

Answer

1757\frac{17 \sqrt{5}}{7}

Explanation

Solution

Given:

A(a,b),B(3,4),C(6,8)A(a, b), \quad B(3, 4), \quad C(-6, -8)

Since AA is the centroid, we have:

a=0,b=0    P(3,5)a = 0, \quad b = 0 \implies P(3, 5)

To find the distance of point PP from the line 2x+3y4=02x + 3y - 4 = 0 measured parallel to the line x2y1=0x - 2y - 1 = 0, we first find the direction cosine.

Let the line x2y1=0x - 2y - 1 = 0 represent:

x=3+rcosθ,y=5+rsinθx = 3 + r \cos \theta, \quad y = 5 + r \sin \theta

where θ\theta is the angle such that:

tanθ=12\tan \theta = \frac{1}{2}

For the line parallel:

r(2cosθ+3sinθ)=17r \left(2 \cos \theta + 3 \sin \theta\right) = -17

Thus:

r=1757=1757r = \left| \frac{-17\sqrt{5}}{7} \right| = \frac{17\sqrt{5}}{7}