Solveeit Logo

Question

Mathematics Question on Determinants

Let A(a,0)A(a, 0) , B(0,b)B(0, b) and C(1,1)C (1, 1) be three points. If 1a+1b=1\frac{1}{a}+\frac{1}{b}=1 , then the three points are

A

vertices of an equilateral triangle

B

vertices of a right angled triangle

C

collinear

D

vertices of an isosceles triangle

Answer

collinear

Explanation

Solution

Area of ΔABC=a01 0b1 111\Delta ABC = \begin{vmatrix}a&0&1\\\ 0&b&1\\\ 1&1&1\end{vmatrix}
=a(b1)0+1(0b)= a\left(b-1\right) -0 + 1\left(0-b\right)
=abab=0= ab - a -b = 0
[1a+1b=1b+a=ab]\left[\because \frac{1}{a} +\frac{1}{b} = 1 \Rightarrow b + a = ab\right]
\therefore Points A,BA, B and CC are collinear.