Solveeit Logo

Question

Question: Let A (4, – 4) and B (9, 6) be the point on the parabola, \[{{y}^{2}}=4x.\] Let C be chosen the arc ...

Let A (4, – 4) and B (9, 6) be the point on the parabola, y2=4x.{{y}^{2}}=4x. Let C be chosen the arc AOB of the parabola, where O is the origin, such that the area of triangle ACB is maximum. Then, the area (in square units) of triangle ACB is:
(a)3134\left( a \right)31\dfrac{3}{4}
(b)32\left( b \right)32
(c)3012\left( c \right)30\dfrac{1}{2}
(d)3114\left( d \right)31\dfrac{1}{4}

Explanation

Solution

We are given a parabola y2=4x.{{y}^{2}}=4x. We can see that it is a parabola symmetric to the x-axis. We will assume that point C is at a location (x, y). Now, we know the formula of the area of the triangle, Area=12[x1(y2y3)+x2(y3y7)+x3(y1y2)]\text{Area}=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{7}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right] to find the area of triangle ACB. For the maximum area, d(Area)dx\dfrac{d\left( \text{Area} \right)}{dx} must be zero. We will compute the derivative of the area to compare it to zero which will give us the point of maxima. Then putting x=14x=\dfrac{1}{4} we will get the maximum area.

Complete step-by-step solution:
We are given a parabola defined as y2=4x.{{y}^{2}}=4x. We know that the parabola y2=4ax{{y}^{2}}=4ax is the parabola which is symmetric to the x-axis. So, our parabola y2=4x{{y}^{2}}=4x is symmetric to the x-axis. Also, we have A (4, – 4) and B (9, 6) lie on the parabola.
We are asked to find C that lies on the curve AOB of the parabola such that area of triangle ACB is maximum. Let us assume the point C has coordinates as (x, y). So, we have,

As C (x, y) lies on the parabola y2=4x{{y}^{2}}=4x so it must satisfy the equation of the parabola.
y2=4x\Rightarrow {{y}^{2}}=4x
y=2x\Rightarrow y=2\sqrt{x}
So our point C (x, y) can be written as C(x,2x).C\left( x,2\sqrt{x} \right). Now, for triangle ACB, we have the coordinate as A(4,4),B(9,6),C(x,2x).A\left( 4,-4 \right),B\left( 9,6 \right),C\left( x,2\sqrt{x} \right). We know that the area of the triangle is given as,
Area=12[x1(y2y3)+x2(y3y7)+x3(y1y2)]\text{Area}=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{7}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]
As we have,
(x1,y1)=(4,4)\left( {{x}_{1}},{{y}_{1}} \right)=\left( 4,-4 \right)
(x2,y2)=(9,6)\left( {{x}_{2}},{{y}_{2}} \right)=\left( 9,6 \right)
(x3,y3)=(x,2x)\left( {{x}_{3}},{{y}_{3}} \right)=\left( x,2\sqrt{x} \right)
So, we get,
Area=12[4(62x)+9(2x(4))+x(46)]\Rightarrow \text{Area}=\dfrac{1}{2}\left[ 4\left( 6-2\sqrt{x} \right)+9\left( 2\sqrt{x}-\left( -4 \right) \right)+x\left( -4-6 \right) \right]
Area=12[248x+18x+3610x]\Rightarrow \text{Area}=\dfrac{1}{2}\left[ 24-8\sqrt{x}+18\sqrt{x}+36-10x \right]
Simplifying further, we get,
Area=12[60+10x10x]\Rightarrow \text{Area}=\dfrac{1}{2}\left[ 60+10\sqrt{x}-10x \right]
Now, as we are looking for a maximum area, so we will find the critical point. To do so, we will differentiate the area with respect to x. So,
d(Area)dx=d(60+10x10x2)dx\dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{d\left( \dfrac{60+10\sqrt{x}-10x}{2} \right)}{dx}
Simplifying further, we get,
d(Area)dx=d(30+5x5x)dx\Rightarrow \dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{d\left( 30+5\sqrt{x}-5x \right)}{dx}
d(Area)dx=d(30)dx+d(5x)dxd(5x)dx\Rightarrow \dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{d\left( 30 \right)}{dx}+\dfrac{d\left( 5\sqrt{x} \right)}{dx}-\dfrac{d\left( 5x \right)}{dx}
After deriving, we get,
d(Area)dx=52x5\Rightarrow \dfrac{d\left( \text{Area} \right)}{dx}=\dfrac{5}{2\sqrt{x}}-5
For maximum area,
d(Area)dx=0\dfrac{d\left( \text{Area} \right)}{dx}=0
52x5=0\Rightarrow \dfrac{5}{2\sqrt{x}}-5=0
Solving for x, we get,
5=5×(2x)\Rightarrow 5=5\times \left( 2\sqrt{x} \right)
x=12\Rightarrow \sqrt{x}=\dfrac{1}{2}
Squaring both the sides, we get,
x=14\Rightarrow x=\dfrac{1}{4}
So, we get the maximum area will occur at x=14.x=\dfrac{1}{4}.
Now, putting x=14x=\dfrac{1}{4} in the value of the area as
Area=12[60+10x10x]\text{Area}=\dfrac{1}{2}\left[ 60+10\sqrt{x}-10x \right]
So,
Maximum Area=12[60+101410×14]\Rightarrow \text{Maximum Area}=\dfrac{1}{2}\left[ 60+10\sqrt{\dfrac{1}{4}}-10\times \dfrac{1}{4} \right]
Simplifying further, we get,
Maximum Area=12[60+102104]\Rightarrow \text{Maximum Area}=\dfrac{1}{2}\left[ 60+\dfrac{10}{2}-\dfrac{10}{4} \right]
Maximum Area=12[1252]\Rightarrow \text{Maximum Area}=\dfrac{1}{2}\left[ \dfrac{125}{2} \right]
Maximum Area=1254\Rightarrow \text{Maximum Area}=\dfrac{125}{4}
Now, changing it to mixed fraction, we get,
Maximum Area=3114sq.units\Rightarrow \text{Maximum Area}=31\dfrac{1}{4}sq.units
Hence, option (d) is the right answer.

Note: The derivative of xn{{x}^{n}} is given as nxn1n{{x}^{n-1}} and the derivative of x\sqrt{x} is also found using this formula. x\sqrt{x} can be written as x12{{x}^{\dfrac{1}{2}}} that means, we have n=12.n=\dfrac{1}{2}. So,
d(x)dx=d(x12)dx\dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{d\left( {{x}^{\dfrac{1}{2}}} \right)}{dx}
Applying the same formula, we get,
d(x)dx=12x121\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}}
d(x)dx=12x12\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2}{{x}^{\dfrac{-1}{2}}}
As, ab=1ab,{{a}^{-b}}=\dfrac{1}{{{a}^{b}}}, so we get,
d(x)dx=12x12\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2{{x}^{\dfrac{1}{2}}}}
Now, again, x12=x,{{x}^{\dfrac{1}{2}}}=\sqrt{x}, So,
d(x)dx=12x\Rightarrow \dfrac{d\left( \sqrt{x} \right)}{dx}=\dfrac{1}{2\sqrt{x}}