Solveeit Logo

Question

Mathematics Question on Straight lines

Let A(3,2)A (-3,2) and B(2,1)B (-2,1) be the vertices of a triangle ABCABC. If the centroid of this triangle lies on the line 3x+4y+2=03x + 4y+2 = 0, then the vertex CC lies on the line :

A

4x+3y+5=04x + 3y + 5 = 0

B

3x+4y+3=03x + 4y + 3 = 0

C

4x+3y+3=04x + 3y + 3 = 0

D

3x+4y+5=03x + 4y + 5 = 0

Answer

3x+4y+3=03x + 4y + 3 = 0

Explanation

Solution

LetC=(x1,y1)Let \, C=\left(x_{1}, y_{1}\right)
Centroid, E=(x153,y1+33)\left(\frac{x_{1}-5}{3}, \frac{y_{1}+3}{3}\right)
Since centroid lies on the line
3x + 4y + 2 = 0
3(x153)+4(y1+33)+2=0\therefore\, 3\left(\frac{x_{1}-5}{3}\right) +4 \left(\frac{y_{1}+3}{3}\right)+2=0
3x1+4y1+3=0\Rightarrow 3x_{1}+4y_{1}+3=0
Hence vertex (x1,y1x_{1}, y_{1}) lies on the line
3x+4y+3=03x + 4y + 3 = 0