Solveeit Logo

Question

Question: Let A (3, 0, – 1), B (2, 10, 6) and C (1, 2, 1) be the vertices of a triangle and M be the midpoint ...

Let A (3, 0, – 1), B (2, 10, 6) and C (1, 2, 1) be the vertices of a triangle and M be the midpoint of AC. If G divides BM in the ratio, 2:1, then cos(GOA)\cos \left( \angle GOA \right) (O being the origin) is equal to:
(a)130\left( a \right)\dfrac{1}{\sqrt{30}}
(b)1610\left( b \right)\dfrac{1}{6\sqrt{10}}
(c)115\left( c \right)\dfrac{1}{\sqrt{15}}
(d)1215\left( d \right)\dfrac{1}{2\sqrt{15}}

Explanation

Solution

We are given M is the midpoint of AC. So, we get the line BM is the median as G is the point on BM on dividing it into 2:1. We will get by definition of the centroid that G is the centroid then the coordinate of G is given by x=x1+x2+x33,y=y1+y2+y33,z=z1+z2+z33.x=\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},y=\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3},z=\dfrac{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}}{3}. Then for finding cos of the angle ROA, we use cos(ROA)=(OR).(OA)OROA.\cos \left( \angle ROA \right)=\dfrac{\left( OR \right).\left( OA \right)}{\left| OR \right|\left| OA \right|}. To do so we will find the magnitude of OR and OA and then find the dot product OR.OA.

Complete step-by-step answer:
We are given the coordinates of the triangle ABC as A (3, 0, – 1), B (2, 10, 6) and C (1, 2, 1). We have M as the midpoint of AC and G is the point on BM that divides BM in the ratio 2:1. We know that as M is the midpoint, so BM is the median of triangle ABC. Now, the point on the median which divides the median in 2:1 is known as the centroid.
As G lies on the median BM and divides BM in the ratio 2:1, so it means G is the centroid.

Now we know that coordinate of the centroid G is given as
x=x1+x2+x33,y=y1+y2+y33,z=z1+z2+z33x=\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},y=\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3},z=\dfrac{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}}{3}
where (x1,y1,z1),(x2,y2,z2),(x3,y3,z3)\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right),\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right),\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right) are the coordinates of the vertex.
As the vertex, we have A (3, 0, – 1), B (2, 10, 6), C (1, 2, 1). So, we get the coordinate of G as
x=3+2+13=63=2x=\dfrac{3+2+1}{3}=\dfrac{6}{3}=2
y=2+10+23=123=4y=\dfrac{2+10+2}{3}=\dfrac{12}{3}=4
z=1+6+13=63=2z=\dfrac{-1+6+1}{3}=\dfrac{6}{3}=2
So, we have the coordinate as G (2, 4, 2).
Now, we have to find the cos of GOA\angle GOA where O is the origin.

We know that the cos angle between the two vectors is given as
cos(XOY)=OX.OYOXOY\cos \left( \angle XOY \right)=\dfrac{OX.OY}{\left| OX \right|\left| OY \right|}
So, for GOA\angle GOA we will get,
cos(GOA)=OG.OAOGOA\cos \left( \angle GOA \right)=\dfrac{OG.OA}{\left| OG \right|\left| OA \right|}
So, for G (2, 4, 2) and O (0, 0, 0) we have,
OG=(20)i+(40)j+(20)kOG=\left( 2-0 \right)i+\left( 4-0 \right)j+\left( 2-0 \right)k
OG=2i+4j+2k\Rightarrow OG=2i+4j+2k
For A (3, 0, – 1) and O (0, 0, 0), we have,
OA=(30)i+(00)j+(10)kOA=\left( 3-0 \right)i+\left( 0-0 \right)j+\left( -1-0 \right)k
OA=3ik\Rightarrow OA=3i-k
Now,
OG=22+42+22\left| OG \right|=\sqrt{{{2}^{2}}+{{4}^{2}}+{{2}^{2}}}
OG=4+16+4\Rightarrow \left| OG \right|=\sqrt{4+16+4}
OG=24\Rightarrow \left| OG \right|=\sqrt{24}
And
OA=32+(1)2\left| OA \right|=\sqrt{{{3}^{2}}+{{\left( -1 \right)}^{2}}}
OA=10\Rightarrow \left| OA \right|=\sqrt{10}
Also,
OA.OG=(3ik)(2i+4j+2k)OA.OG=\left( 3i-k \right)\left( 2i+4j+2k \right)
OA.OG=62\Rightarrow OA.OG=6-2
OA.OG=4\Rightarrow OA.OG=4
Putting this value in cos(GOA).\cos \left( \angle GOA \right).
cos(GOA)=OA.OGOAOG\cos \left( \angle GOA \right)=\dfrac{OA.OG}{\left| OA \right|\left| OG \right|}
cos(GOA)=41024\Rightarrow \cos \left( \angle GOA \right)=\dfrac{4}{\left| \sqrt{10} \right|\left| \sqrt{24} \right|}
After simplification we get,
cos(GOA)=42×2×15\Rightarrow \cos \left( \angle GOA \right)=\dfrac{4}{2\times 2\times \sqrt{15}}
cos(GOA)=115\Rightarrow \cos \left( \angle GOA \right)=\dfrac{1}{\sqrt{15}}

So, the correct answer is “Option C”.

Note: To simplify the square root we need to factorize it. 24\sqrt{24} can be written as 24=2×2×2×3\sqrt{24}=\sqrt{2\times 2\times 2\times 3} and 10=2×5.\sqrt{10}=\sqrt{2\times 5}. So,
24×10=2×2×2×2×3×5\sqrt{24}\times \sqrt{10}=\sqrt{2\times 2\times 2\times 2\times 3\times 5}
2 comes out two times as it makes a pain that gives us 2×2×15.2\times 2\times \sqrt{15}. This we use while simplifying. Also, remember that |OG| means the magnitude of OG which is given as x2+y2+z2\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}} if OG is given as xi^+yj^+2k.^x\widehat{i}+y\widehat{j}+2\widehat{k.}