Question
Question: Let A + 2B =\(egin{bmatrix} 1 & 2 & 0 \\ 6 & - 3 & 3 \\ - 5 & 3 & 1 \end{bmatrix}\)and 2A –B = \(...
Let A + 2B =$egin{bmatrix} 1 & 2 & 0 \ 6 & - 3 & 3 \
- 5 & 3 & 1 \end{bmatrix}and2A–B=egin{bmatrix} 2 & - 1 & 5 \ 2 & - 1 & 6 \ 0 & 1 & 2 \end{bmatrix}$then Tr(1) – Tr(2) has the value equal to
A
0
B
1
C
2
D
None of these
Answer
2
Explanation
Solution
2A + 4B = $\begin{bmatrix} 2 & 4 & 0 \ 12 & - 6 & 6 \
- 10 & 6 & 2 \end{bmatrix}$ … (1)
2A –B = 220−1−11562 … (2)
On solving (1) and (2)
B = $\begin{bmatrix} 0 & 1 & - 1 \ 2 & - 1 & 0 \
- 2 & 1 & 0 \end{bmatrix}& A =\begin{bmatrix} 1 & 0 & 2 \ 2 & - 1 & 3 \
- 1 & 1 & 1 \end{bmatrix}$
So Tr (1) – Tr (2) = 1 – (–1) = 2