Solveeit Logo

Question

Mathematics Question on types of differential equations

Let α→ = 2iˆjˆ+5kˆandb=αiˆ+βjˆ+2kˆ.If((α×b)×iˆ).kˆ2\^{i}-\^{j}+5\^{k} and b→= α\^{i}+β\^{j}+2\^{k}. If ((α→×b→)×\^{i}).\^{k} =232\frac{ 23}{2},then b×2jˆ|b→×2\^{j}\| is equal to

A

4

B

5

C

√21

D

√17

Answer

5

Explanation

Solution

The correct answer is (B):
Given,
α=2jˆjˆ+5kˆα→=2\^{j}-\^{j}+5\^{k}
and
b=αjˆ+βjˆ+2kˆb→ = α\^{j}+β\^{j}+2\^{k}
Also,
((α×b)×i).kˆ=232((α→×b→)×i).\^{k} = \frac{23}{2}
((α.iˆ)b(b.iˆ).α).kˆ=232⇒ ((α→.\^{i})b - (b→.\^{i}).α→).\^{k} = \frac{23}{2}
(2.bα.α).kˆ=232(2.b→-α.α→).\^{k} = \frac{23}{2}
⇒ 2.2-5α = 232\frac{23}{2}
⇒ α = 32\frac{-3}{2}
Now, b×2jˆ=(α6iˆ+β6jˆ+2kˆ)×2jˆ|b→×2\^{j}| = |(α6\^{i}+β6\^{j}+2\^{k})×2\^{j|}
=2αkˆ+04iˆ= |2α\^{k}+0-4\^{i}|
= √4α2+16
= 4(32)2+16√4(\frac{-3}{2})2+16
= 5