Solveeit Logo

Question

Mathematics Question on Straight lines

Let A(2,3)A(2, -3) and B(2,1)B (-2, 1) be two angular points of ΔABC\Delta ABC. If the centroid of the triangle moves on the line 2x+3y=12x + 3y = 1, then the locus of the angular point CC is given by

A

2x+3y=92x + 3y = 9

B

2x3y=92x - 3y = 9

C

3x+2y=53x + 2y = 5

D

3x2y=33x - 2y = 3

Answer

2x+3y=92x + 3y = 9

Explanation

Solution

Let the coordinates of CC be (α,β)(\alpha, \beta).
\therefore Coordinates of centroid
=(22+α3,3+1+β3)=\left(\frac{2-2+\alpha}{3}, \frac{-3+1+\beta}{3}\right)
=(α3,β23)=\left(\frac{\alpha}{3}, \frac{\beta-2}{3}\right)
Since, centroid lie on 2x+3y=12 x+3 y=1
2α3+3(β23)=1\therefore \frac{2 \alpha}{3}+3\left(\frac{\beta-2}{3}\right)=1
2α3+3β63=1\Rightarrow \frac{2 \alpha}{3}+\frac{3 \beta-6}{3}=1
2α+3β6=3\Rightarrow 2 \alpha+3 \beta-6=3
2α+3β=9\Rightarrow 2 \alpha+3 \beta=9
\therefore Locus of point CC will be 2x+3y=92 x+3 y=9