Solveeit Logo

Question

Mathematics Question on Vectors

Let A(2,3,5)A (2, 3, 5) and C(3,4,2)C(-3, 4, -2) be opposite vertices of a parallelogram ABCDABCD. If the diagonal BD=i^+2j^+3k^\overrightarrow{BD} = \hat{i} + 2 \hat{j} + 3 \hat{k}, then the area of the parallelogram is equal to

A

12410\frac{1}{2} \sqrt{410}

B

12474\frac{1}{2} \sqrt{474}

C

12586\frac{1}{2} \sqrt{586}

D

12306\frac{1}{2} \sqrt{306}

Answer

12474\frac{1}{2} \sqrt{474}

Explanation

Solution

The area is given by:

Area = 12AC×BD\frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BD}|

Calculate AC=(5i+j7k)\overrightarrow{AC} = (-5i + j - 7k) and BD=i+2j+3k\overrightarrow{BD} = i + 2j + 3k and find the cross product.

Then,

Area = 12474\frac{1}{2} \sqrt{474}