Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

Let A(2,1)A(-2, -1), B(1,0)B(1, 0), C(α,β)C(\alpha, \beta), and D(γ,δ)D(\gamma, \delta) be the vertices of a parallelogram ABCDABCD. If the point CC lies on 2xy=52x - y = 5 and the point DD lies on 3x2y=63x - 2y = 6, then the value of α+β+γ+δ| \alpha + \beta + \gamma + \delta | is equal to \\_\\_\\_\\_\\_.

Answer

Given that A(2,1)A(-2, -1) and B(1,0)B(1, 0) are two vertices of the parallelogram and C(α,β)C(\alpha, \beta) and D(γ,δ)D(\gamma, \delta) are the other two vertices.

Since PP is the midpoint of diagonals ACAC and BDBD, we have:

P=(α22,β12)=(γ+12,δ2)P = \left(\frac{\alpha - 2}{2}, \frac{\beta - 1}{2}\right) = \left(\frac{\gamma + 1}{2}, \frac{\delta}{2}\right)

Equating coordinates:

α22=γ+12andβ12=δ2\frac{\alpha - 2}{2} = \frac{\gamma + 1}{2} \quad \text{and} \quad \frac{\beta - 1}{2} = \frac{\delta}{2}

Simplifying:

α2=γ+1    αγ=3(1)\alpha - 2 = \gamma + 1 \implies \alpha - \gamma = 3 \quad (1) β1=δ    βδ=1(2)\beta - 1 = \delta \implies \beta - \delta = 1 \quad (2)

Given that (γ,δ)(\gamma, \delta) lies on the line 3x2y=63x - 2y = 6:

3γ2δ=6(3)3\gamma - 2\delta = 6 \quad (3)

Also, (α,β)(\alpha, \beta) lies on the line 2xy=52x - y = 5:

2αβ=5(4)2\alpha - \beta = 5 \quad (4)

Solving equations (1), (2), (3), and (4) simultaneously: From (1) and (2):

α=γ+3,β=δ+1\alpha = \gamma + 3, \quad \beta = \delta + 1

Substitute these values into (3) and (4):

3γ2δ=63\gamma - 2\delta = 6 2(γ+3)(δ+1)=52(\gamma + 3) - (\delta + 1) = 5

Simplifying:

3γ2δ=63\gamma - 2\delta = 6 2γ+6δ1=5    2γδ=02\gamma + 6 - \delta - 1 = 5 \implies 2\gamma - \delta = 0

Solving these equations:

γ=6,δ=12,α=3,β=11\gamma = -6, \quad \delta = -12, \quad \alpha = -3, \quad \beta = -11

Thus, the value of α+β+γ+δ|\alpha + \beta + \gamma + \delta| is:

α+β+γ+δ=3+(11)+(6)+(12)=32=32|\alpha + \beta + \gamma + \delta| = | -3 + (-11) + (-6) + (-12)| = | -32| = 32