Solveeit Logo

Question

Mathematics Question on Relations and Functions

Let A= {−1,0,1,2}, B={−4,−2,0,2} and f,g: A→B be functions defined by f(x)=x2x,xAandg(x)=2x121,xA.f(x)=x^2-x, \,x\in A\, and \,g(x)=2\mid\frac{ x-1}{2}\mid-1,x\in A.. Are f and g equal? Justify your answer. (Hint: One may note that two function f:ABandg:ABf:A\to B \,and \: g:A\to B such that f(a)=g(a)aA,f(a)=g(a) \forall \,a \in\,A, are called equal functions).

Answer

The correct answer is: f and g are equal
It is given that A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2}.
Also, it is given that f(x)=x2x,xAandg(x)=2x121,xA.f(x)=x^2-x, \,x\in A\, and \,g(x)=2\mid\frac{ x-1}{2}\mid-1,x\in A.
It is observed that:
f(1)=(1)2(1)=1+1=2f(-1)=(-1)^2-(-1)=1+1=2.
g(1)=2(1)121=2(32)g(-1)=2\mid(-1)-\frac{1}{2}\mid-1=2(\frac{3}{2})
(1)=g(1)\Rightarrow(-1)=g(-1)
f(0)=(0)20=0f(0)=(0)^2-0=0
g(0)=20=12=2(12)1=0g(0)=2\mid0=\frac{1}{2}\mid=2(\frac{1}{2})-1=0
f(0)=g(0)f(0)=g(0)
f(1)=(1)21=1f(1)=(1)^2-1=1
g(1)=21=12=2(12)1=0g(1)=2\mid1=\frac{1}{2}\mid=2(\frac{1}{2})-1=0
(1)=g(1)\Rightarrow(1)=g(1)
f(2)=(2)22=2f(2)=(2)^2-2=2
g(2)=22121=2(32)1=2g(2)=2\mid\frac{2-1}{2}\mid-1=2(\frac{3}{2})-1=2
f(2)=g(2)\Rightarrow f(2)=g(2)
f(a)=g(a)aA\therefore f(a)=g(a)\, \forall\, a\,\in\,A
Hence, the functions f and g are equal.
relation