Solveeit Logo

Question

Mathematics Question on Binomial theorem

Let a=1+2C23!+3C24!+4C25!+, a = 1 + \frac{{^2C_2}}{3!} + \frac{{^3C_2}}{4!} + \frac{{^4C_2}}{5!} + \dots,
b=1+1C0+1C11!+2C0+2C1+2C22!+3C0+3C1+3C2+3C33!+b = 1 + \frac{{^1C_0 + ^1C_1}}{1!} + \frac{{^2C_0 + ^2C_1 + ^2C_2}}{2!} + \frac{{^3C_0 + ^3C_1 + ^3C_2 + ^3C_3}}{3!} + \dotsThen 2ba2\frac{2b}{a^2} is equal to _____

Answer

Consider the function:
f(x)=1+(1+x)1!+(1+x)22!+(1+x)33!+f(x) = 1 + \frac{(1 + x)}{1!} + \frac{(1 + x)^2}{2!} + \frac{(1 + x)^3}{3!} + \dots
This represents the series expansion for e1+xe^{1+x}.

We also have:
e1+x1+x=1+(1+x)1!+(1+x)22!+(1+x)33!+\frac{e^{1+x}}{1+x} = 1 + \frac{(1 + x)}{1!} + \frac{(1 + x)^2}{2!} + \frac{(1 + x)^3}{3!} + \dots
Identifying the coefficient of x2x^2 in the right-hand side (RHS), we find:
Coefficient of x2 in RHS: 1+2C23+3C24+=a.\text{Coefficient of } x^2 \text{ in RHS: } 1 + \frac{2C_2}{3} + \frac{3C_2}{4} + \dots = a.
For the left-hand side (LHS), we consider:
e(1+x22!)(1x+x22!)e \left(1 + \frac{x^2}{2!}\right) \left(1 - x + \frac{x^2}{2!}\right)

This simplifies to terms where the coefficient of x2x^2 matches the expansion on the RHS: ee+e2!=a.e - e + \frac{e}{2!} = a.
For the series for bb, we have:
b=1+21!+222!+233!+=e2.b = 1 + \frac{2}{1!} + \frac{2^2}{2!} + \frac{2^3}{3!} + \dots = e^2.
Finally, we evaluate:
2ba2=8.\frac{2b}{a^2} = 8.