Question
Mathematics Question on Binomial theorem
Let a=1+3!2C2+4!3C2+5!4C2+…,
b=1+1!1C0+1C1+2!2C0+2C1+2C2+3!3C0+3C1+3C2+3C3+…Then a22b is equal to _____
Answer
Consider the function:
f(x)=1+1!(1+x)+2!(1+x)2+3!(1+x)3+…
This represents the series expansion for e1+x.
We also have:
1+xe1+x=1+1!(1+x)+2!(1+x)2+3!(1+x)3+…
Identifying the coefficient of x2 in the right-hand side (RHS), we find:
Coefficient of x2 in RHS: 1+32C2+43C2+⋯=a.
For the left-hand side (LHS), we consider:
e(1+2!x2)(1−x+2!x2)
This simplifies to terms where the coefficient of x2 matches the expansion on the RHS: e−e+2!e=a.
For the series for b, we have:
b=1+1!2+2!22+3!23+⋯=e2.
Finally, we evaluate:
a22b=8.