Solveeit Logo

Question

Mathematics Question on Fundamental Theorem of Calculus

Let a 1 = b 1 = 1, a n = a n – 1 + 2 and b n = a a + b n – 1 for every natural number _n _≥ 2. Thenn=115\sum_{n=1}^{15} anbna_n⋅b_n is equal to ______.

Answer

a 1 = b 1 = 1
a n = a n – 1 + 2 (for n ≥ 2) ; b n = a n + b n – 1
a 2 = a 1 + 2 = 1 + 2 = 3 ; b 2 = a 2 + b 1 = 3 + 1 = 4
a 3 = a 2 + 2 = 3 + 2 = 5 ; b 3 = a 3 + b 2 = 5 + 4 = 9
a 4 = a 3 + 2 = 5 + 2 = 7 ; b 4 = a 4 + b 3 = 7 + 9 = 16
a 15 = a 14 + 2 = 29
b 15 = 225

n=115\sum_{n=1}^{15} anbna_nb_n=1×1+3×4+5×9+⋯29×225

n=111\sum_{n=1}^{11} anbna_nb_n=n=115\sum_{n=1}^{15}(2n−1)n2=n=115\sum_{n=1}^{15} 2n3−n=115\sum_{n=1}^{15} n2

=2[15×162\frac{15×16}{2}]2−[15×16×316\frac{15×16×31}{6}]=27560