Question
Mathematics Question on Fundamental Theorem of Calculus
Let a 1 = b 1 = 1, a n = a n – 1 + 2 and b n = a a + b n – 1 for every natural number _n _≥ 2. Then∑n=115 an⋅bn is equal to ______.
Answer
a 1 = b 1 = 1
a n = a n – 1 + 2 (for n ≥ 2) ; b n = a n + b n – 1
a 2 = a 1 + 2 = 1 + 2 = 3 ; b 2 = a 2 + b 1 = 3 + 1 = 4
a 3 = a 2 + 2 = 3 + 2 = 5 ; b 3 = a 3 + b 2 = 5 + 4 = 9
a 4 = a 3 + 2 = 5 + 2 = 7 ; b 4 = a 4 + b 3 = 7 + 9 = 16
a 15 = a 14 + 2 = 29
b 15 = 225
∑n=115 anbn=1×1+3×4+5×9+⋯29×225
∴ ∑n=111 anbn=∑n=115(2n−1)n2=∑n=115 2n3−∑n=115 n2
=2[215×16]2−[615×16×31]=27560