Solveeit Logo

Question

Mathematics Question on Statistics

Let a1,a2,,a10a_1, a_2, \ldots, a_{10} be 10 observations such that k=110ak=50and1k<j10akaj=1100\sum_{k=1}^{10} a_k = 50 \quad \text{and} \quad \sum_{1 \leq k < j \leq 10} a_k \cdot a_j = 1100. Then the standard deviation of a1,a2,,a10a_1, a_2, \ldots, a_{10} is equal to:

A

55

B

5\sqrt{5}

C

1010

D

15\sqrt{15}

Answer

5\sqrt{5}

Explanation

Solution

Step 1. Use the Formula for Standard Deviation:

σ=1ni=110ai2(1ni=110ai)2\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{10} a_i^2 - \left( \frac{1}{n} \sum_{i=1}^{10} a_i \right)^2}

where n=10n = 10.

Step 2. Calculate i=110ai2\sum_{i=1}^{10} a_i^2: We know:

i=110ai=50,1k<j10akaj=1100\sum_{i=1}^{10} a_i = 50, \quad \sum_{1 \leq k < j \leq 10} a_k \cdot a_j = 1100
Expanding:

(i=110ai)2=i=110ai2+21k<j10akaj\left( \sum_{i=1}^{10} a_i \right)^2 = \sum_{i=1}^{10} a_i^2 + 2 \sum_{1 \leq k < j \leq 10} a_k \cdot a_j

2500=i=110ai2+2200i=110ai2=3002500 = \sum_{i=1}^{10} a_i^2 + 2200 \Rightarrow \sum_{i=1}^{10} a_i^2 = 300

Step 3. Compute Standard Deviation:

σ=30010(5010)2=3025=5\sigma = \sqrt{\frac{300}{10} - \left( \frac{50}{10} \right)^2} = \sqrt{30 - 25} = \sqrt{5}