Solveeit Logo

Question

Question: Let \({{a}_{1}},{{a}_{2}},.......\) and \({{b}_{1}},{{b}_{2}},........\) be the arithmetic progressi...

Let a1,a2,.......{{a}_{1}},{{a}_{2}},....... and b1,b2,........{{b}_{1}},{{b}_{2}},........ be the arithmetic progressions such that a1=25{{a}_{1}}=25, b1=75{{b}_{1}}=75 and a100+b100=100{{a}_{100}}+{{b}_{100}}=100. The sum of the first hundred terms of the progression (a1+b1),(a2+b2),..........\left( {{a}_{1}}+{{b}_{1}} \right),\left( {{a}_{2}}+{{b}_{2}} \right),.......... is
(A) 0
(B) 100
(C) 10,000
(D) 5,05,000

Explanation

Solution

We start solving this question by first adding the two progressions a1,a2,.......{{a}_{1}},{{a}_{2}},....... and b1,b2,........{{b}_{1}},{{b}_{2}},........, and then showing that the progression (a1+b1),(a2+b2),..........\left( {{a}_{1}}+{{b}_{1}} \right),\left( {{a}_{2}}+{{b}_{2}} \right),.......... is an arithmetic progression. Then we consider the formula for sum of n terms of A.P n2(2a1+(n1)d)\dfrac{n}{2}\left( 2{{a}_{1}}+\left( n-1 \right)d \right) and the formula for the nth{{n}^{th}} term of A.P an=a1+(n1)d{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d and transform the formula for the sum of n terms into the terms of first and last term. Then we substitute the given values of a1{{a}_{1}}, b1{{b}_{1}} and a100+b100{{a}_{100}}+{{b}_{100}} in the formula for n=100 and solve it to find the required value.

Complete step by step answer:
We are given that a1,a2,.......{{a}_{1}},{{a}_{2}},....... and b1,b2,........{{b}_{1}},{{b}_{2}},........ are two arithmetic progressions.
Let us assume that the common difference of the arithmetic progression a1,a2,.......{{a}_{1}},{{a}_{2}},....... is d1{{d}_{1}}.
Then, we have
an+1an=d1{{a}_{n+1}}-{{a}_{n}}={{d}_{1}}
Let us assume that the common difference of the arithmetic progression b1,b2,........{{b}_{1}},{{b}_{2}},........ is d2{{d}_{2}}.
Then, we have
bn+1bn=d2{{b}_{n+1}}-{{b}_{n}}={{d}_{2}}
Now let us consider the progression (a1+b1),(a2+b2),..........\left( {{a}_{1}}+{{b}_{1}} \right),\left( {{a}_{2}}+{{b}_{2}} \right),...........
Let us consider the difference between two immediate terms in the above progression.
(an+1+bn+1)(an+bn) (an+1an)+(bn+1bn)=d1+d2 \begin{aligned} & \Rightarrow \left( {{a}_{n+1}}+{{b}_{n+1}} \right)-\left( {{a}_{n}}+{{b}_{n}} \right) \\\ & \Rightarrow \left( {{a}_{n+1}}-{{a}_{n}} \right)+\left( {{b}_{n+1}}-{{b}_{n}} \right)={{d}_{1}}+{{d}_{2}} \\\ \end{aligned}
So, as the difference between the consecutive terms is constant, we can say that the progression (a1+b1),(a2+b2),..........\left( {{a}_{1}}+{{b}_{1}} \right),\left( {{a}_{2}}+{{b}_{2}} \right),.......... is an Arithmetic Progression.
Now we need to find the sum of first 100 terms of the progression (a1+b1),(a2+b2),..........\left( {{a}_{1}}+{{b}_{1}} \right),\left( {{a}_{2}}+{{b}_{2}} \right),...........
Now let us consider the formula for sum of first n terms of an Arithmetic Progression a1,a2,.......,an{{a}_{1}},{{a}_{2}},.......,{{a}_{n}} with common difference d.
n2(2a1+(n1)d)\dfrac{n}{2}\left( 2{{a}_{1}}+\left( n-1 \right)d \right)
Now, let us also consider the formula for the nth{{n}^{th}} term of the above AP.
an=a1+(n1)d{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d
Using this we can transform the formula for the sum of n terms of A.P as,
n2(2a1+ana1) n2(a1+an) \begin{aligned} & \Rightarrow \dfrac{n}{2}\left( 2{{a}_{1}}+{{a}_{n}}-{{a}_{1}} \right) \\\ & \Rightarrow \dfrac{n}{2}\left( {{a}_{1}}+{{a}_{n}} \right) \\\ \end{aligned}
So, using this formula for the sum of n terms of A.P, Sn=n2(a1+an){{S}_{n}}=\dfrac{n}{2}\left( {{a}_{1}}+{{a}_{n}} \right), we can find the sum of 100 terms of the progression (a1+b1),(a2+b2),..........\left( {{a}_{1}}+{{b}_{1}} \right),\left( {{a}_{2}}+{{b}_{2}} \right),.......... as,
S100=n2((a1+b1)+(a100+b100))\Rightarrow {{S}_{100}}=\dfrac{n}{2}\left( \left( {{a}_{1}}+{{b}_{1}} \right)+\left( {{a}_{100}}+{{b}_{100}} \right) \right)
As we are given that a1=25{{a}_{1}}=25, b1=75{{b}_{1}}=75 and a100+b100=100{{a}_{100}}+{{b}_{100}}=100, let us substitute them in the above equation.
S100=1002((25+75)+(100)) S100=50(100+100) S100=50(200) S100=10000 \begin{aligned} & \Rightarrow {{S}_{100}}=\dfrac{100}{2}\left( \left( 25+75 \right)+\left( 100 \right) \right) \\\ & \Rightarrow {{S}_{100}}=50\left( 100+100 \right) \\\ & \Rightarrow {{S}_{100}}=50\left( 200 \right) \\\ & \Rightarrow {{S}_{100}}=10000 \\\ \end{aligned}

So, the correct answer is “Option C”.

Note: There is a possibility of one making a mistake while solving this problem by taking the formula for sum of n terms of A.P as, n2(a1+(n1)d)\dfrac{n}{2}\left( {{a}_{1}}+\left( n-1 \right)d \right) which is equal to nan2\dfrac{n{{a}_{n}}}{2}. But it is wrong. The actual formula for the sum of n terms of an A.P is n2(2a1+(n1)d)\dfrac{n}{2}\left( 2{{a}_{1}}+\left( n-1 \right)d \right).