Solveeit Logo

Question

Quantitative Aptitude Question on Arithmetic Progression

Let a1,a2,..a3na_1 , a_2 ,……..a_{3n} be an arithmetic progression with a1=3a_1 = 3 and a2=7.a_2 = 7. If a1+a2+.+a3n=1830a_1 + a_2 + ….+a_{3n} = 1830, then what is the smallest positive integer m such that m (a1+a2+.+an)>1830?(a_1 + a_2 + …. + a_n ) > 1830?

A

8

B

9

C

10

D

11

Answer

9

Explanation

Solution

Given a1=3a_1​=3, it follows that d=a2a1=73=4d=a_2​−a_1​=7−3=4 and a2=7.a_2​=7.
The sum a1+a2+a3++a3n=1830a_1​+a_2​+a_3​+…+a_{3n}​=1830.
Using the formula for the sum of an arithmetic series,
Sn=n2[2a1+(n1)d],S_n​=\frac{n}{2}​[2a_1​+(n−1)d],
we get 1830=3n2[2×3+(3n1)×4].1830=3n^2[2×3+(3n−1)×4].
Simplifying this equation, we get 12n2+2n610=0,12n^2+2n−610=0, which factors to (6n+61)(n10)=0.(6n+61)(n−10)=0.
Since n cannot be negative, n=10.n=10.

Substituting n=10n=10 into m(3+7+11++39)>1830,m(3+7+11+…+39)>1830,
we get m×102[2×3+(101)×4]>1830,m×10^2[2×3+(10−1)×4]>1830,
which simplifies to m×5(6+36)>1830\.
Further simplification yields m×5×42>1830m×5×42>1830, and solving for mm, we find m>8.714.m>8.714.
Therefore, m=9.m=9.