Solveeit Logo

Question

Mathematics Question on Sequence and series

Let a1,a2,.......,a30a_1, a_2 , ....... , a_{30} be an A.PA. P., S=i=130aiS =\displaystyle \sum^{30}_{i=1} a_i and T=i=115a(2i1)T = \displaystyle\sum^{15}_{i=1} a_{(2i -1)}. If a5=27a_5 = 27 and S2T=75,S - 2T = 75, then a10a_{10} is equal to :

A

57

B

47

C

42

D

52

Answer

52

Explanation

Solution

S=a1+a2+......+a30S = a_1 + a_2 + ...... + a_{30}
S=302[a1+a30]S = \frac{30}{2} [a_1 + a_{30}]
S=15(a1+a30)=15(a1+a1+29d)S = 15\left(a_{1} +a_{30}\right) = 15 \left(a_{1} +a_{1} +29d\right)
T=a1+a3+....+a29T = a_{1}+a_{3} + ....+ a_{29}
=(a1)+(a1+2d)....+(a1+28d)= \left(a_{1}\right)+ \left(a_{1}+2d\right) ....+\left(a_{1} +28d\right)
=15a1+2d(1+2+.....+14)= 15a_{1} +2d\left(1+2+.....+14\right)
T=15a1+210dT = 15a_{1} +210d
Now use S - 2T = 75
  15(2a1+29d)2(15a1+210d)=75\Rightarrow \; 15 (2a_1 + 29d) - 2 (15a_1 + 210 d) = 75
  d=5\Rightarrow \; d = 5
Given a5=27=a1+4d    a1=7a_5 = 27 = a_1 + 4d \; \Rightarrow \; a_1 = 7
Now a10=a1+9d=7+9×5=52a_{10} = a_1 + 9d = 7 + 9 \times 5 = 52