Question
Mathematics Question on Sequence and series
Let a1,a2,.......,a30 be an A.P., S=i=1∑30ai and T=i=1∑15a(2i−1). If a5=27 and S−2T=75, then a10 is equal to :
A
57
B
47
C
42
D
52
Answer
52
Explanation
Solution
S=a1+a2+......+a30
S=230[a1+a30]
S=15(a1+a30)=15(a1+a1+29d)
T=a1+a3+....+a29
=(a1)+(a1+2d)....+(a1+28d)
=15a1+2d(1+2+.....+14)
T=15a1+210d
Now use S - 2T = 75
⇒15(2a1+29d)−2(15a1+210d)=75
⇒d=5
Given a5=27=a1+4d⇒a1=7
Now a10=a1+9d=7+9×5=52