Question
Question: Let \({a_1},{a_2},{a_3},{\text{ - - - - - - - }}{{\text{a}}_{49}}\) be in A.P. such that \(\sum\limi...
Let a1,a2,a3, - - - - - - - a49 be in A.P. such that k=0∑12a4k+1=416 and a9+a43=66. If a12+a22+ - - - - - - - - + a172=140m, then m is equal to
A) 34
B) 33
C) 66
D) 68
Solution
Here given a1,a2,a3, - - - - - - - a49are in A.P.
Let a1=a and common difference=d
k=0∑12a4k+1=416 that means a1+a5+a9+ - - - - - - - - - + a49=416
So, we can put a1=a, a5=a+4d, a9=a+8d and so on. In this way we can find a relation between a and d.
Complete step-by-step answer:
So, here according to the question, it is given that a1,a2,a3, - - - - - - - a49are in A.P.
So, let the first term of A.P. that is a1 be a and the common difference be d.
Then the nthterm of A.P. is given by
Tn=a+(n−1)d
So, a5=a+4d
And here it is also given that k=0∑12a4k+1=416. So, this means if we put k=0 , k=1 and sum it up, we will get a1+a5+a9+a13 + a17 + - - - - - - - - - + a49=416
Now we can write a5=a+4d, a9=a+8d and so on.
a+a+4d+a+8d+a+12d+ - - - - - - - - - +a+48d=416 a(1+1+ - - - - - 13 times)+4d(1+2+3+ - - - - - + 12)=416 13a+4d(1+2+3+ - - - - - + 12)=416………………. (1)
And we know the formula of
1+2+3+4+ - - - - - - - n=2n(n+1) so, for n=12, we get 1+2+3+ - - - - - 12 = 212×13=78
So, we get
⇒13a+4d(78)=416 ⇒13(a+24d)=416 ⇒a+24d=32…………………... (2)
Also, in question it is given that
a9+a43=66 ⇒a+8d+a+42d=66 2a+50d=66 a+25d=33…………………... (3)
Now subtract equation (2) from (3),
(a+25d)−(a+24d)=33−32 d=1
So,
⇒a+24d=32 ⇒a+24=32 ⇒a=8
Here we got a=8 and d=1
So, we have a1=8, a2=8+d a3=8+2d and so on.
a1=8, a2=9, a3=10, a4=11 and so on.. a17=a+16d=8+16=24
And now we are given a12+a22+ - - - - - - - - + a172=140m
We have to find the value of m
a12+a22+ - - - - - - - - + a172=140m
So, putting the values, we get
82+92+ - - - - - - - - - + 242=140m
We know that
12+22+32+ - - - - - - - - - + n2=6n(n+1)(2n+1)
Now, if n=24, we get
12+22+32+ - - - - - - + 242=624×25×49.................... (4)
Now, if n=7, we get
12+22+32+ - - - - - - + 72=67×8×15................... (5)
Now subtracting equation (5) by (4), we get
⇒82+92+102+ - - - - - - - - + 242=624×25×49−67×8×15 =4×25×49−7×4×5
As we know 82+92+ - - - - - - - - - + 242=140m
So,
⇒140m=4900−140 ⇒140m=4760 ⇒m=1404760=34 m=34
So, option A is the correct answer.
Note: We must know the basic formulas that
1+2+3+4+ - - - - - - - n=2n(n+1)
12+22+32+ - - - - - - - - - + n2=6n(n+1)(2n+1)
13+23+33+ - - - - - - - + n3=[2n(n+1)]2
And we know sum of A.P. is Sn=2n[2a+(n−1)d]