Solveeit Logo

Question

Question: Let \({a_1},{a_2},{a_3},{\text{ - - - - - - - }}{{\text{a}}_{49}}\) be in A.P. such that \(\sum\limi...

Let a1,a2,a3, - - - - - - - a49{a_1},{a_2},{a_3},{\text{ - - - - - - - }}{{\text{a}}_{49}} be in A.P. such that k=012a4k+1=416\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} = 416 and a9+a43=66{a_9} + {a_{43}} = 66. If a12+a22+ - - - - - - - - + a172=140m{a_1}^2 + {a_2}^2 + {\text{ - - - - - - - - + }}{a_{17}}^2 = 140m, then mm is equal to
A) 3434
B) 3333
C) 66
D) 68

Explanation

Solution

Here given a1,a2,a3, - - - - - - - a49{a_1},{a_2},{a_3},{\text{ - - - - - - - }}{{\text{a}}_{49}}are in A.P.
Let a1=a{a_1} = a and common difference=d = d
k=012a4k+1=416\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} = 416 that means a1+a5+a9+ - - - - - - - - - + a49=416{a_1} + {a_5} + {a_9} + {\text{ - - - - - - - - - + }}{{\text{a}}_{49}} = 416
So, we can put a1=a{a_1} = a, a5=a+4d{a_5} = a + 4d, a9=a+8d{a_9} = a + 8d and so on. In this way we can find a relation between aa and dd.

Complete step-by-step answer:
So, here according to the question, it is given that a1,a2,a3, - - - - - - - a49{a_1},{a_2},{a_3},{\text{ - - - - - - - }}{{\text{a}}_{49}}are in A.P.
So, let the first term of A.P. that is a1{a_1} be aa and the common difference be dd.
Then the nth{n^{th}}term of A.P. is given by
Tn=a+(n1)d{T_n} = a + \left( {n - 1} \right)d
So, a5=a+4d{a_5} = a + 4d
And here it is also given that k=012a4k+1=416\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} = 416. So, this means if we put k=0 , k=1k = 0{\text{ , }}k = 1 and sum it up, we will get a1+a5+a9+a13 + a17 + - - - - - - - - - + a49=416{a_1} + {a_5} + {a_9} + {a_{13}}{\text{ + }}{{\text{a}}_{17}}{\text{ + - - - - - - - - - + }}{{\text{a}}_{49}} = 416
Now we can write a5=a+4d{a_5} = a + 4d, a9=a+8d{a_9} = a + 8d and so on.
a+a+4d+a+8d+a+12d+ - - - - - - - - - +a+48d=416 a(1+1+ - - - - - 13 times)+4d(1+2+3+ - - - - - + 12)=416 13a+4d(1+2+3+ - - - - - + 12)=416. (1)  a + a + 4d + a + 8d + a + 12d + {\text{ - - - - - - - - - }} + a + 48d = 416 \\\ a\left( {1 + 1 + {\text{ - - - - - }}13{\text{ times}}} \right) + 4d\left( {1 + 2 + 3 + {\text{ - - - - - + }}12} \right) = 416 \\\ 13a + 4d\left( {1 + 2 + 3 + {\text{ - - - - - + }}12} \right) = 416……………….{\text{ (1)}} \\\
And we know the formula of
1+2+3+4+ - - - - - - - n=n(n+1)2 so, for n=12, we get 1+2+3+ - - - - - 12 = 12×132=78  1 + 2 + 3 + 4 + {\text{ - - - - - - - }}n = \dfrac{{n\left( {n + 1} \right)}}{2} \\\ {\text{so, for }}n = 12, \\\ {\text{we get}} \\\ 1 + 2 + 3 + {\text{ - - - - - 12 = }}\dfrac{{12 \times 13}}{2} = 78 \\\
So, we get
13a+4d(78)=416 13(a+24d)=416 a+24d=32... (2) \Rightarrow 13a + 4d\left( {78} \right) = 416 \\\ \Rightarrow 13\left( {a + 24d} \right) = 416 \\\ \Rightarrow a + 24d = 32…………………...{\text{ (2)}}
Also, in question it is given that
a9+a43=66 a+8d+a+42d=66 2a+50d=66 a+25d=33... (3) {a_9} + {a_{43}} = 66 \\\ \Rightarrow a + 8d + a + 42d = 66 \\\ 2a + 50d = 66 \\\ a + 25d = 33…………………...{\text{ (3)}}
Now subtract equation (2) from (3),
(a+25d)(a+24d)=3332 d=1  \left( {a + 25d} \right) - \left( {a + 24d} \right) = 33 - 32 \\\ d = 1 \\\
So,
a+24d=32 a+24=32 a=8 \Rightarrow a + 24d = 32 \\\ \Rightarrow a + 24 = 32 \\\ \Rightarrow a = 8
Here we got a=8a = 8 and d=1d = 1
So, we have a1=8{a_1} = 8, a2=8+d{a_2} = 8 + d a3=8+2d{a_3} = 8 + 2d and so on.
a1=8, a2=9, a3=10, a4=11 and so on..{a_1} = 8,{\text{ }}{a_2} = 9,{\text{ }}{a_3} = 10,{\text{ }}{a_4} = 11{\text{ and so on}}.. a17=a+16d=8+16=24{a_{17}} = a + 16d = 8 + 16 = 24
And now we are given a12+a22+ - - - - - - - - + a172=140m{a_1}^2 + {a_2}^2 + {\text{ - - - - - - - - + }}{a_{17}}^2 = 140m
We have to find the value of mm
a12+a22+ - - - - - - - - + a172=140m{a_1}^2 + {a_2}^2 + {\text{ - - - - - - - - + }}{a_{17}}^2 = 140m
So, putting the values, we get
82+92+ - - - - - - - - - + 242=140m{8^2} + {9^2} + {\text{ - - - - - - - - - + 2}}{{\text{4}}^2} = 140m
We know that
12+22+32+ - - - - - - - - - + n2=n(n+1)(2n+1)6{1^2} + {2^2} + {3^2} + {\text{ - - - - - - - - - + }}{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}
Now, if n=24n = 24, we get
12+22+32+ - - - - - - + 242=24×25×496.................... (4){1^2} + {2^2} + {3^2} + {\text{ - - - - - - + 2}}{{\text{4}}^2} = \dfrac{{24 \times 25 \times 49}}{6}....................{\text{ (4)}}
Now, if n=7n = 7, we get
12+22+32+ - - - - - - + 72=7×8×156................... (5){1^2} + {2^2} + {3^2} + {\text{ - - - - - - + }}{{\text{7}}^2} = \dfrac{{7 \times 8 \times 15}}{6}...................{\text{ (5)}}
Now subtracting equation (5) by (4), we get
82+92+102+ - - - - - - - - + 242=24×25×4967×8×156 =4×25×497×4×5 \Rightarrow {8^2} + {9^2} + {10^2} + {\text{ - - - - - - - - + 2}}{{\text{4}}^2} = \dfrac{{24 \times 25 \times 49}}{6} - \dfrac{{7 \times 8 \times 15}}{6} \\\ = 4 \times 25 \times 49 - 7 \times 4 \times 5
As we know 82+92+ - - - - - - - - - + 242=140m{8^2} + {9^2} + {\text{ - - - - - - - - - + 2}}{{\text{4}}^2} = 140m
So,
140m=4900140 140m=4760 m=4760140=34 m=34 \Rightarrow 140m = 4900 - 140 \\\ \Rightarrow 140m = 4760 \\\ \Rightarrow m = \dfrac{{4760}}{{140}} = 34 \\\ m = 34

So, option A is the correct answer.

Note: We must know the basic formulas that
1+2+3+4+ - - - - - - - n=n(n+1)21 + 2 + 3 + 4 + {\text{ - - - - - - - }}n = \dfrac{{n\left( {n + 1} \right)}}{2}
12+22+32+ - - - - - - - - - + n2=n(n+1)(2n+1)6{1^2} + {2^2} + {3^2} + {\text{ - - - - - - - - - + }}{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}
13+23+33+ - - - - - - - + n3=[n(n+1)2]2{1^3} + {2^3} + {3^3} + {\text{ - - - - - - - + }}{n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}
And we know sum of A.P. is Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]