Solveeit Logo

Question

Mathematics Question on Sequence and series

Let a1,a2,a3,a_1, a_2, a_3, \ldots be an arithmetic progression with a1=7a_1=7 and common difference 8. Let T1,T2,T3,T_1, T_2, T_3, \ldots be such that T1=3T_1=3 and Tn+1Tn=anT_{n+1}-T_n=a_n for n1n \geq 1. Then, which of the following is/are TRUE ?

A

T20=1604T_{20}=1604

B

k=120Tk=10510\displaystyle\sum_{ k =1}^{20} T_{ k }=10510

C

k=130Tk=35610\displaystyle\sum_{ k =1}^{30} T_{ k }=35610

D

T30=3454T_{30}=3454

Answer

k=120Tk=10510\displaystyle\sum_{ k =1}^{20} T_{ k }=10510

Explanation

Solution

According to the question,
n=1n(Tn+1Tn)=an\sum\limits_{n=1}^n(T_{n+1}-T_n)=\sum a_n
Tn+1T1=an⇒T_{n+1}-T_1=\sum a_n
=n2[2×7+(n1)8]=\frac{n}{2}[2\times7+(n-1)8]
So, by solving this, we get :
Tn+1 = n(4n + 3) + T1
Tn+1 = 4n2 + 3n + 3
Now, by using this equation the above equation in the options, we get :
In (A),
T20 = 4 × 192 + 3 × 9 + 3
= 1444 + 27 + 3 = 1474
In (B),
k=019Tn+1=k=019k(4k+3)+3\sum\limits^{19}_{k=0}T_{n+1}=\sum\limits_{k=0}^{19}k(4k+3)+3
=k=019(4k2+3k+3)=10510=\sum\limits_{k=0}^{19}(4k^2+3k+3)=10510
In (C),
k=130Tk=n=029Tn+1=n=029n(4n+3)+3\sum\limits^{30}_{k=1}T_k=\sum\limits^{29}_{n=0}T_{n+1}=\sum\limits_{n=0}^{29}n(4n+3)+3
=4×(29×30×596)+3(29×30)2+90=4\times(\frac{29\times30\times59}{6})+\frac{3(29\times30)}{2}+90
=35615=35615
In (D),
T30 = 29(4 × 29 + 3) + 3 = 3454
So, we can see that only (B) and (D) are true statements.
Therefore, the correct option is (B) :k=120Tk=10510\displaystyle\sum_{ k =1}^{20} T_{ k }=10510 and (D) : T30=3454T_{30}=3454