Solveeit Logo

Question

Mathematics Question on nth Term of an AP

Let a1,a2,a3,a_1, a_2, a_3, \ldots be an AP If a7=3a_7=3, the product a1a4a_1 a_4 is minimum and the sum of its first nn terms is zero, then n!4an(n+2)n !-4 a_{n(n+2)} is equal to :

A

3814\frac{381}{4}

B

9

C

334\frac{33}{4}

D

24

Answer

24

Explanation

Solution

The correct answer is (D) : 24
a+6d=3.......................(1)
Z=a(a+3d)
=(3−6d)(3−3d)
=18d2−27d+9
Differentiating with respect to d
⇒36d−27=0
⇒d=43​, from (1)a=2−3​,(Z= minimum )
Now, Sa​=2n​(−3+(n−1)43​)=0
⇒n=5
Now,
n!−4an(n+2)​=120−4(a35​)
=120−4(a+(35−1)d)
=120−4(2−3​+34⋅(43​))
=120−4(4−6+102​)
=120−96=24