Question
Mathematics Question on Sequences and Series
Let a1,a2,a3,… be in an arithmetic progression of positive terms.
Let Ak=a12−a22+a32−a42+⋯+a2k−12−a2k2.
If A3=−153, A5=−435, and a12+a22+a32=66, then a17−A7 is equal to _________.
Answer
Given:
d→common difference.
The general term:
Ak=kd[2a+(2k−1)d]
Given:
A3=−153 ⇒153=13d[2a+5d]
Simplifying:
51=d[2a+5d]…(1)
Also, given:
A5=−435 435=5d[2a+9d]
Simplifying:
87=d[2a+9d]…(2)
Subtracting equation (1) from equation (2):
36=4d2 d=3,a=1
Finally:
a17−A7=49−[−7.3[2+39]]=910