Solveeit Logo

Question

Mathematics Question on Sequences and Series

Let a1,a2,a3,a_1, a_2, a_3, \dots be in an arithmetic progression of positive terms.
Let Ak=a12a22+a32a42++a2k12a2k2A_k = a_1^2 - a_2^2 + a_3^2 - a_4^2 + \dots + a_{2k-1}^2 - a_{2k}^2.
If A3=153A_3 = -153, A5=435A_5 = -435, and a12+a22+a32=66a_1^2 + a_2^2 + a_3^2 = 66, then a17A7a_{17} - A_7 is equal to _________.

Answer

Given:

dcommon difference.d \rightarrow \text{common difference.}

The general term:

Ak=kd[2a+(2k1)d]A_k = kd \left[ 2a + (2k - 1)d \right]

Given:

A3=153A_3 = -153 153=13d[2a+5d]\Rightarrow 153 = 13d \left[ 2a + 5d \right]

Simplifying:

51=d[2a+5d](1)51 = d \left[ 2a + 5d \right] \quad \dots (1)

Also, given:

A5=435A_5 = -435 435=5d[2a+9d]435 = 5d \left[ 2a + 9d \right]

Simplifying:

87=d[2a+9d](2)87 = d \left[ 2a + 9d \right] \quad \dots (2)

Subtracting equation (1) from equation (2):

36=4d236 = 4d^2 d=3,a=1d = 3, \quad a = 1

Finally:

a17A7=49[7.3[2+39]]=910a_{17} - A_7 = 49 - \left[ -7.3 \left[ 2 + 39 \right] \right] = 910