Solveeit Logo

Question

Mathematics Question on Arithmetic Progression

Let a1,a2,a3a_1, a_2, a_3, ... be an arithmetic progression with nonzero common difference. It is given that i=412ai=63\sum^{12}_{i = 4} a_i = 63 and ak=7a_k = 7 for some k . Then the value of k is

A

6

B

7

C

8

D

9

Answer

8

Explanation

Solution

Given, \(a_1, a_2, a_3, ... ) be an arithmetic progression $a1+a2+a3+...an=n2(a1+an) a_{1} +a_{2} +a_{3} + ...a_{n} = \frac{n}{2}\left(a_{1}+a_{n}\right)

Σi=412ai=63\Sigma_{i=4}^{12} a_{i} = 63

a4+a5+a6+...+a12=63\Rightarrow a_{4} +a_{5} +a_{6} + ... +a_{12} = 63

92(a4+a12)=63\Rightarrow \frac{9}{2}\left(a_{4} +a_{12}\right) = 63

a4+a12=14\Rightarrow a_{4} +a_{12} =14

a+3d+a+11d=14\Rightarrow a +3d +a +11d = 14

2a+14d=14\Rightarrow 2a +14 d = 14

a+7d=7\Rightarrow a+7d = 7

a8=7\Rightarrow a_{8} = 7

k=8\Rightarrow k = 8
Therefore the Correct Answer is (C) 8