Solveeit Logo

Question

Mathematics Question on Sequence and series

Let a1,a2,a3,...a_1, a_2, a_3,... be an A.PA.P, such that a1+a2++apa1+a2+a3++aq=p3q3;pq\frac{a_{1}+a_{2}+\ldots+a_{p}}{a_{1}+a_{2}+a_{3}+\ldots+a_{q}} = \frac{p^{3}}{q^{3}} ; p\ne q Then a6a21\frac{a_{6}}{a_{21}} is equal to:

A

4111\frac{41}{11}

B

31121\frac{31}{121}

C

1141\frac{11}{41}

D

1211861\frac{121}{1861}

Answer

31121\frac{31}{121}

Explanation

Solution

a1+a2++apa1+a2+a3++aq=p3q3\frac{a_{1}+a_{2}+\ldots+a_{p}}{a_{1}+a_{2}+a_{3}+\ldots+a_{q}} = \frac{p^{3}}{q^{3}}
a1+a2a1=81a1+(a1+d)=8a1\Rightarrow\quad \frac{a_{1}+a_{2}}{a_{1}} = \frac{8}{1} \Rightarrow a_{1}+\left(a_{1}+d\right) = 8a_{1}
d=6a1\Rightarrow\quad d=6a_{1}
Now a6a21=a1+5da1+20d\frac{a_{6}}{a_{21}} = \frac{a_{1}+5d}{a_{1}+20d}
=a1+5×6a1a1+20×6a1=1+301+120=31121= \frac{a_{1}+5\times6a_{1}}{a_{1}+20\times 6a_{1}} = \frac{1+30}{1+120} = \frac{31}{121}