Solveeit Logo

Question

Mathematics Question on Sequence and series

Let a1,a2,a3,a4a_1,a_2,a_3,a_4 and a5a_5 be such that a1,a2a_1,a_2 anda3 a_3 are in A.P., a2,a3a_2,a_3 and a4a_4 are in G.P. and a3,a4a_3, a_4 and a5a_5 are in H.P. Then, a1,a3a_1,a_3 and a5a_5 are in

A

G.P

B

A.P

C

H.P

D

none of these.

Answer

G.P

Explanation

Solution

Since a1,a2,a3a_{1}, a_{2}, a_{3} are in A.PA.P. 2a2=a1+a3...(1)\therefore 2a_{2} = a_{1}+a_{3} \quad...\left(1\right) Since a2,a3,a4a_{2}, a_{3}, a_{4} are in G.P.G.P. a32=a2a4...(2)\therefore a_{3}^{2} = a_{2}a_{4} \quad...\left(2\right) Since a3,a4,a5a_{3}, a_{4}, a_{5} are in H.P.H.P. a4=2a3a5a3+a5...(3)\therefore a_{4} = \frac{2a_{3}a_{5}}{a_{3}+a_{5}} \quad...\left(3\right) Putting a2=a1+a32a_{2} = \frac{a_{1}+a_{3}}{2} and a4=2a3a5a3+a5a_{4}= \frac{2a_{3}a_{5}}{a_{3}+a_{5}} in (2)\left(2\right), We get a32=a1+a322a3a5a3+a5a_{3}^{2} = \frac{a_{1}+a_{3}}{2}\cdot \frac{2a_{3}a_{5}}{a_{3}+a_{5}} a32+a3a5=a1a5+a3a5a_{3}^{2} + a_{3}a_{5} = a_{1}a_{5} +a_{3}a_{5} a32=a1a5 \Rightarrow a_{3}^{2} = a_{1}a_{5} a1,a3,a5 \Rightarrow a_{1}, a_{3}, a_{5} are in G.P.G.P.