Question
Mathematics Question on Sequence and series
Let a1,a2,...,a10 be in AP and h1,h2 equal to .....,h10 be in HP. If a1=h1=2 and a10=h10=3, then a4h7 is
2
3
5
6
6
Solution
Since a1,a2,a3...,a10 are in AP.
Now, \hspace15mm a_{10} =a_1 +9d
\Rightarrow\hspace25mm 3 = 2 +9d
\Rightarrow\hspace25mm d = 1/9
and \hspace20mm a_4 = a_1 + 3d
\Rightarrow\hspace20mm a_4 = a_1 + 3(1/9) = 2 +1/3 = 7/3
Also, h1,h2,h3,...,h10 are in HP.
\Rightarrow\hspace25mm \frac{1}{h_1}, \frac{1}{h_2},\frac{1}{h_3},...,\frac{1}{h_{10}} are in AP.
Given \hspace15mm h_1 = 2, h_{10} = 3
\therefore \hspace20mm \frac{1}{h_{10}}=\frac{1}{h_1} + 9d_1
\Rightarrow \hspace20mm \frac{1}{3}=\frac{1}{2} + 9d_1
\Rightarrow \hspace15mm -\frac{1}{6}=9d_1 \Rightarrow d_1 = - \frac{1}{54}
and \hspace15mm \frac{1}{h_7}=\frac{1}{h_1} + 6d_1
\Rightarrow \hspace20mm \frac{1}{h_7}= \frac{1}{2} + \frac{6 \times 1}{-54} \Rightarrow \frac{1}{h_7} = \frac{1}{2}- \frac{1}{9}
\Rightarrow \hspace20mm \frac{1}{h_7}= \frac{18}{7}
\therefore \hspace20mm a_4 h_7=\frac{7}{3} \times \frac{18}{7} = 6