Solveeit Logo

Question

Mathematics Question on Relations and functions

Let A=1,2,3,,20A = \\{ 1, 2, 3, \dots, 20 \\}. Let R1R_1 and R2R_2 be two relations on AA such that R1=(a,b):b is divisible by aR_1 = \\{(a, b) : b \text{ is divisible by } a\\}
and R2=(a,b):a is an integral multiple of bR_2 = \\{(a, b) : a \text{ is an integral multiple of } b\\}.Then, the number of elements in R1R2R_1 - R_2 is equal to \\_\\_\\_\\_.

Answer

n(R1)=20+10+6+5+4+3+3+2+2+2+1++1(10 times)n(R_1) = 20 + 10 + 6 + 5 + 4 + 3 + 3 + 2 + 2 + 2 + 1 + \cdots + 1 \quad \text{(10 times)}

n(R1)=66n(R_1) = 66

R1R2=(1,1),(2,2),,(20,20)R_1 \cap R_2 = \\{(1, 1), (2, 2), \ldots, (20, 20)\\}

n(R1R2)=20n(R_1 \cap R_2) = 20

n(R1R2)=n(R1)n(R1R2)n(R_1 - R_2) = n(R_1) - n(R_1 \cap R_2)

=6620= 66 - 20

R1R2=46 pairsR_1 - R_2 = 46 \text{ pairs}