Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let A(1,1,2)A(1,-1,2) and B(2,3,1)B(2,3,-1) be two points. If a point PP divides ABAB internally in the ratio 2:3,2:3, then the position vector of PP is

A

15(i^+j^+k^)\frac{1}{\sqrt{5}}(\hat{i}+\hat{j}+\hat{k})

B

13(i^+6j^+k^)\frac{1}{\sqrt{3}}(\hat{i}+6\hat{j}+\hat{k})

C

13(i^+j^+k^)\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})

D

15(7i^+3j^+4k^)\frac{1}{5}(7\hat{i}+3\hat{j}+4\hat{k})

Answer

15(7i^+3j^+4k^)\frac{1}{5}(7\hat{i}+3\hat{j}+4\hat{k})

Explanation

Solution

The position vector of P
=3A+2B3+2=\frac{3A+2B}{3+2}
=3(1,1,2)+2(2,3,1)5=\frac{3(1,-1,2)+2(2,3,-1)}{5}
=(7,3,4)5=\frac{(7,3,4)}{5}
=15(7i^+3j^+4k^)=\frac{1}{5}(7\hat{i}+3\hat{j}+4\hat{k})