Solveeit Logo

Question

Mathematics Question on Sequences and Series of real numbers

Let a1=1a_1 = 1, an+1=an(n+sinnn)a_{n+1} = a_n \left( \frac{\sqrt{n} + \sin n}{n} \right), and bn=an2b_n = a_n^2 for all nNn \in \mathbb{N}. Then which of the following statements is/are correct?

A

the series n=1an\sum_{n=1}^{\infty} a_n converges

B

the series n=1bn\sum_{n=1}^{\infty} b_n converges

C

the series n=1an\sum_{n=1}^{\infty} a_n converges but the series n=1bn\sum_{n=1}^{\infty} b_n does NOT converge

D

neither the series n=1an\sum_{n=1}^{\infty} a_n nor the series n=1bn\sum_{n=1}^{\infty} b_n converges

Answer

the series n=1an\sum_{n=1}^{\infty} a_n converges

Explanation

Solution

The correct option is (A): the series n=1an\sum_{n=1}^{\infty} a_n converges ,(B): the series n=1bn\sum_{n=1}^{\infty} b_n converges