Question
Mathematics Question on general and middle terms
Let a1=1,a2,a3,a4,… be consecutive natural numbersThen tan−1(1+a1a21)+tan−1(1+a2a31)+…+tan−1(1+a2021a20221) is equal to
A
cot−1(2022)−4π
B
4π−cot−1(2022)
C
tan−1(2022)−4π
D
4π−tan−1(2022)
Answer
4π−cot−1(2022)
Explanation
Solution
a2−a1=a3−a2=…..=a2022−a2021=1.
∴tan−1(1+a1a2a2−a1)+tan−1(1+a2a3a3−a2)+…..+tan−1(1+a2021a2022a2022−a2021)
=[(tan−1a2)−tan−1a1]+[tan−1a3−tan−1a2]+…..+[tan−1a2022−tan−1a2021]
=tan−1a2022−tan−1a1
=tan−1(2022)−tan−11=tan−12022−4π (option 3)
=(2π−cot−1(2022))−4π
=4π−cot−1(2022)( option 2)
So, the correct option is (B) : 4π−cot−1(2022)