Solveeit Logo

Question

Mathematics Question on general and middle terms

Let a1=1,a2,a3,a4,a_1=1, a_2, a_3, a_4, \ldots be consecutive natural numbersThen tan1(11+a1a2)+tan1(11+a2a3)++tan1(11+a2021a2022)\tan ^{-1}\left(\frac{1}{1+a_1 a_2}\right)+\tan ^{-1}\left(\frac{1}{1+a_2 a_3}\right)+\ldots +\tan ^{-1}\left(\frac{1}{1+a_{2021} a_{2022}}\right) is equal to

A

cot1(2022)π4\cot ^{-1}(2022)-\frac{\pi}{4}

B

π4cot1(2022)\frac{\pi}{4}-\cot ^{-1}(2022)

C

tan1(2022)π4\tan ^{-1}(2022)-\frac{\pi}{4}

D

π4tan1(2022)\frac{\pi}{4}-\tan ^{-1}(2022)

Answer

π4cot1(2022)\frac{\pi}{4}-\cot ^{-1}(2022)

Explanation

Solution

a2​−a1​=a3​−a2​=…..=a2022​−a2021​=1.
∴tan−1(1+a1​a2​a2​−a1​​)+tan−1(1+a2​a3​a3​−a2​​)+…..+tan−1(1+a2021​a2022​a2022​−a2021​​)
=[(tan−1a2​)−tan−1a1​]+[tan−1a3​−tan−1a2​]+…..+[tan−1a2022​−tan−1a2021​]
=tan−1a2022​−tan−1a1​
=tan−1(2022)−tan−11=tan−12022−4π​ (option 3)
=(2π​−cot−1(2022))−4π​
=4π​−cot−1(2022)( option 2)
So, the correct option is (B) : π4cot1(2022)\frac{\pi}{4}-\cot ^{-1}(2022)